

Evaluación de la deformación permanente en una trayectoria de humedecimiento o secado

Natalia Pérez García Paul Garnica Anguas Luis Alberto García Trujillo Alfredo García Zafra

Publicación Técnica No. 561 Sanfandila, Qro, 2019

SECRETARÍA DE COMUNICACIONES Y TRANSPORTES INSTITUTO MEXICANO DEL TRANSPORTE

Evaluación de la deformación permanente en una trayectoria de humedecimiento o secado

Publicación Técnica No. 561 Sanfandila, Qro, 2019

Esta investigación fue realizada en la Coordinación de Infraestructura del Instituto Mexicano del Transporte, por la Dra. Natalia Pérez García, el Dr. Paul Garnica Anguas, y los estudiantes Luis Alberto García Trujillo del Tecnológico de Oaxaca y Alfredo Zafra del Tecnológico de Tlaxiaco.

Esta investigación es el producto final del proyecto de investigación interna II-22/16. Evaluación de la deformación permanente en trayectorias de humedecimiento y secado.

Contenido

,		tablas	v vii
	opsis	figuras	ix
	stract		χi
		ejecutivo	χiii
	oducc	•	1
		teórico	
١.		Introducción	3 3 3
		Definición de rodera	3
		Contribución de las capas del pavimento a la deformación	3
	1.3.	permanente	4
	1.4	¿De qué variables depende la deformación permanente?	7
2.	Mater	riales, equipos y procedimientos de prueba	13
	2.1.	Descripción del equipo utilizado	13
	2.2.	·	16
		2.2.1. Muestreo	16
		2.2.2. Preparación de los suelos, determinación de propiedades	
		índice y características de compactación.	16
		2.2.3. Elaboración y acondicionamiento de especímenes de	
		prueba	17
		2.2.3.1. Compactación de la probeta	17
		2.2.3.2. Acondicionamiento de especímenes	21
		2.2.4. Prueba de deformación permanente	23
		2.2.5. Prueba de resistencia en compresión no confinada	23
3.	Resu	ltados y análisis	25
	3.1.	Propiedades índice	25
	3.2.	•	25
	3.3.	Resultados típicos de las pruebas de deformación permanente	26
		Variabilidad de los resultados de deformación permanente	27
		Efecto del contenido de agua en la deformación permanente	30
	3.6.	Relación entre la variación de contenido de agua y deformación	32
		permanente	
	3.7.	Relación entre el módulo de resiliencia y la variación de	33
		contenido de agua	
	3.8.	Relación entre el módulo de resiliencia y la deformación	34
		permanente	
	3.9	Relación entre la variación de contenido de agua y la resistencia	34
		en compresión simple	
4.	Conc	lusiones	37

Referencias	39
Anexo 1. Características iniciales y finales de los especímenes de prueba	41

Índice de tablas

Tabla 2.1.	Procedimientos utilizados para evaluar las propiedades índice	Página 17
Tabla 3.1.	Propiedades de los suelos en estudio	25

Índice de figuras

		Página
Figura 1.1.	Deformación plástica (mm) de la carpeta asfáltica; base y subbase contra el número de pasadas de vehículos	
	comerciales (de estudio de la OECD)	5
Figura 1.2.	Medición de rodera en las capas del pavimento	6
Figura 1.3.	Comportamiento de la deformación con el número de ciclos	7
Figura 1.4.	Influencia de la relación de esfuerzo en la deformación	,
r igara ii ii	permanente (Barksdale, 1972)	8
Figura 1.5.	Efecto del confinamiento en la deformación axial	9
Figura 1.6.	Efecto de la frecuencia de carga en la deformación	40
Figura 1.7.	permanente (Wiu et al., 1999) Efecto de la densidad en la deformación permanente	10
rigura 1.7.	(Barksdale, 1972; citado por Acikgöz y Fauf, 2010)	
Figura 2.1.	Unidades que componen el equipo triaxial	13
Figura 2.2.	Componentes de la unidad de aplicación de carga	14
Figura 2.3.	Sensores instalados en el equipo triaxial cícico GCTS;	
	celda de carga y sensor de desplazamiento axial (±1.25 mm)	16
Figura 2.4.	Materiales muestreados para el estudio	16
Figura 2.5.	Proceso de humectación, mezclado y curado de las	.0
•	muestras	18
Figura 2.6.	Dimensiones del molde y pisón de compactación	40
Figura 2.7.	utilizados Pesaje y colocación del suelo en el molde de	18
Figura 2.7.	Pesaje y colocación del suelo en el molde de compactación	19
Figura 2.8.	Proceso de compactación	20
Figura 2.9.	Enrase y extracción del espécimen de prueba	20
Figura 2.10.	Pesado y medición del espécimen compactado	20
Figure 2.11.	Empaque de especímenes compactados	21
Figura 2.12.	Acondicionamiento de especímenes (trayectoria de secado)	21
Figura 2.13.	Preparación de especímenes para el proceso de	
· ·	humedecimiento	22
Figura 2.14.	Acondicionamiento de especímenes (trayectoria de	00
Figura 3.1.	humedecimiento) Curvas de compactación Proctor estándar de los suelos	22 26
i iguia 3.1.	Odivas de compaciación i noción estandar de los suelos	20

	estudiados	
Figura 3.2.	Resultado típico de una prueba de deformación a 20	
	000 repeticiones de carga	27
Figura 3.3.	Pruebas de deformación permanente en tres muestras	
	ensayadas en condiciones óptimas de compactación	28
Figura 3.4.	Pruebas de deformación permanente en muestras que	
	se secaron durante un día	29
Figura 3.5.	Efecto del contenido de agua en la deformación	
	permanente	30
Figura 3.6.	Curvas granulométricas de los suelos estudiados	31
Figura 3.7.	Relación entre deformación permanente y cambio en el	
	contenido de agua para los tres suelos	32
Figura 3.8.	Relación entre el módulo de resiliencia y la variación de	
	contenido de agua	33
Figura 3.9.	Relación entre el módulo de resiliencia y la deformación	
	permanente	34
Figura 3.10.	Relación entre la resistencia a compresión simple y	
	variación en contenido de agua	35

Sinopsis

Este documento presenta resultados de deformación permanente obtenidos en muestras de tres tipos de suelo. Para evaluar la deformación permanente, se compactaron varias muestras en las condiciones óptimas de compactación con respecto a la prueba Proctor estándar. Posterior a la compactación, las muestras fueron sometidas a humedecimiento o secado y después se ensayaron en la prueba de deformación permanente. Esta prueba consistió en aplicar 20 000 ciclos de carga al espécimen; la intensidad del esfuerzo aplicado fue de 97 kPa; durante la prueba también se aplicó un confinamiento constante de 14 kPa. Con los resultados se obtuvieron relaciones entre la variación de contenido de agua y parámetros como la deformación permanente, módulo de resiliencia y compresión simple. Asimismo, de la prueba de deformación permanente se determinó el módulo de resiliencia en el último ciclo de prueba. Se encontró que la deformación permanente y el módulo de resiliencia pueden relacionarse con un modelo potencial.

Abstract

This document presents results of permanent deformation obtained in samples of three types of soil.

To evaluate the permanent deformation, several samples were compacted at optimum conditions with respect to the standard Proctor test. After the compaction, the samples were subjected to wetting or drying and then they were tested in the permanent deformation test. This test consisted in applying 20,000 load cycles to the specimen; the intensity of the applied stress was 97 kPa. During the test, a constant confining pressure of 14 kPa was also applied. With the results, relationships were obtained between the variation of water content and parameters such as permanent deformation, resilient modulus and unconfined compression. Also, from the permanent deformation test, the resilient modulus was determined in the last test cycle. It was found that the permanent deformation and the resilient modulus can be related to a potential model.

Resumen ejecutivo

En este documento se presenta el tema de deformación permanente en suelos de terraplén o subrasante. En la introducción se mencionan algunos de los aspectos del porqué la deformación permanente ha sido menos estudiada con respecto al módulo de resiliencia.

En el capítulo uno, se define rodera y con resultados de literatura se muestra cómo cada capa del pavimento contribuye a la rodera total. Asimismo, en este capítulo se describen varios factores de los que depende la deformación permanente. Entre ellos están el número de repeticiones de carga, el nivel de esfuerzos, la presión de confinamiento, la frecuencia de carga y el tiempo de reposo, la densidad del material, el contenido de agua y el contenido de finos.

En el capítulo dos, se describe el equipo triaxial usado en la investigación, así como, los sensores adosados al mismo. Se describen también los materiales utilizados, la elaboración de las probetas y su acondicionamiento para incrementar y reducir el contenido de agua. Además, se indican los procedimientos seguidos en la medición de la deformación permanente y de la resistencia en compresión simple.

En el capítulo de resultados y análisis, se muestra la dependencia de la deformación permanente de la variación en el contenido de agua para cada tipo de suelo. Se observó por ejemplo que la deformación permanente se incrementa rápidamente en los primeros ciclos de carga y posteriormente se estabiliza, pero esto depende del contenido de agua y del tipo de suelo.

En el suelo SC, por ejemplo, se observó que, en los contenidos de agua más altos, la deformación permanente se acumula rápidamente antes de los 5000 ciclos y posteriormente se estabiliza. El fenómeno de estabilización no se observó en el suelo SM del HVS que contiene finos más plásticos y, por lo tanto, más susceptibles de absorber una mayor cantidad de agua.

En el capítulo de resultados también se presentan relaciones entre variación de contenido de agua y parámetros como deformación permanente, módulo de resiliencia y resistencia en compresión simple. Una vez que estas relaciones se determinaron, para el suelo SM de Los Cues, se determinó un modelo para estimar la deformación permanente en función de la variación del contenido de agua y del módulo de resiliencia.

Al final se presentan las conclusiones de la investigación.

Introducción

Es común ver que uno de las propiedades de los materiales en las que se han enfocado varias investigaciones -nacionales o internacionales- relacionadas con el diseño de pavimentos es el módulo de resiliencia. De acuerdo con Cheung, 1994, aún cuando se ha puesto mayor atención al comportamiento resiliente de los materiales, la descripción de estos tiene que ser con base en:

- Respuesta resiliente, ya que una excesiva resiliencia puede causar deformaciones resilientes grandes y por lo tanto fatiga en los materiales superiores.
- Resistencia a la deformación permanente, ya que esto dará idea de la rodera que se presentará en superficie.

Por otro lado, Elliot et al. (1998) menciona que las metodologías de diseño de pavimentos actuales consideran el comportamiento resiliente de los materiales a través del módulo de resiliencia, pero ignoran la deformación permanente aún cuando es una componente importante en el desempeño del pavimento. Estos autores indican que en el diseño del pavimento deben incorporarse tanto las deformaciones elásticas como las plásticas.

Elliot et al. (1998) señalan que existen varias razones por las cuales a la deformación permanente no se ha estudiado tanto como el módulo de resiliencia; algunas de ellas son:

- Las pruebas son de larga duración, lo que hace que estas sean costosas,
- La mayor parte de las investigaciones han estado enfocadas al comportamiento resiliente de las subrasantes.
- Se cree que el diseño de pavimentos se mejora entendiendo el módulo de resiliencia de los suelos,
- Se cree que las fallas de los pavimentos están altamente asociadas al comportamiento resiliente más que al comportamiento plástico de las subrasantes,
- La investigación ha sido enfocada a carreteras de alto volumen donde la carpeta asfáltica es de espesor importante y/o la capa de base está

considerada en el diseño y la deformación permanente de la subrasante se considera insignificante,

 La deformación permanente parece ser más crítica en pavimentos con una carpeta delgada como la que se tiene en caminos rurales o caminos de bajo tránsito.

Otros autores como Gidel, et al., 2001, mencionan otros inconvenientes para llevar a cabo pruebas de deformación permanente. Estos son:

- La complejidad de las pruebas por la influencia de la historia de esfuerzos; en un espécimen generalmente se aplica solamente un nivel de carga.
- Se necesitan al menos 10 pruebas para determinar cómo afecta el nivel de carga a la deformación permanente.
- Es difícil hacer la transición entre pruebas de laboratorio para predecir comportamiento del pavimento en servicio. Esto se debe a que en campo el pavimento está sujeto a una historia de esfuerzos muy compleja que depende de la fase inicial de construcción, cargas de tránsito variadas, variaciones en las condiciones climáticas, etc.
- Los resultados muestran dispersiones importantes. Por lo que se requieren ensayar varios especímenes.

El Instituto Mexicano del Transporte ha llevado a cabo estudios acerca del módulo de resiliencia desde 1997, pero los estudios de la deformación permanente se han quedado postergados y las razones son algunas de las ya mencionadas en los párrafos anteriores. Por esta razón, y conociendo la importancia de la deformación permanente, en lo últimos años también se están realizando investigaciones sobre este parámetro.

En este documento se presenta el estudio de la deformación permanente de algunos suelos que se sometieron a trayectorias de humedecimiento o secado para simular condiciones después de la construcción. Uno de los suelos se clasificó como SC y los otros dos como SM. Con los resultados obtenidos se propone un modelo para estimar la deformación permanente Cabe señalar que, el modelo aplica a los suelos investigados.

1 Marco teórico

1.1. Introducción

Para que una carretera cumpla con su función, esta debe ser apropiadamente diseñada y tener un mantenimiento adecuado. Cuando estas estructuras se construyen sobre subrasantes con propiedades inadecuadas, la superficie tiende a presentar deformaciones antes de cumplir con su vida útil. Sin embargo, esta condición es indeseable ya que incrementa el consumo de combustible debido al incremento de la fricción; también incrementa el riesgo de que se presente el fenómeno de hidroplaneo en época de lluvias o también se puede presentar el riesgo de deslizamiento cuando el agua se congela (Kolisoja y Dawson, 2006, citado por Acikgöz y Fauf, 2010). La rodera además hace que se incrementen los costos de mantenimiento, lo cual causa pérdidas a las agencias propietarias o concesionarias de las carreteras.

Las roderas tienen como origen el hecho que las propiedades de la base, subbase y subrasante no son perfectamente elásticas; un ciclo carga-descarga aplicada por una llanta causará una deformación permanente pequeña en cada capa. Con el tiempo, debido a las secuencias de carga-descarga, cada capa acumulará una cantidad importante de deformación permanente. Las deformaciones en las capas individuales se reflejan en la superficie como roderas. Debido a las consecuencias de estas deformaciones, es importante tener la capacidad para estimarlas antes de que exceda niveles terminales, esto para que se pueda planear el mantenimiento (Yapa y Lytton, 1988). Sin embargo, para poder estimarlas es importante conocer los factores de los que depende. En este estudio se muestran algunos de los factores que ya se han reportado en la literatura.

1.2. Definición de rodera

Muhunthan et al. (2016) define a la rodera como la formación de depresiones longitudinales a lo largo de las áreas donde pasan las llantas de los vehículos con levantamientos a los lados debido a que las cargas de los vehículos inducen deformaciones en todas las capas del pavimento. La magnitud de deformación con la que cada capa contribuye depende de la magnitud y posición de la carga, de los esfuerzos en cada capa y la resistencia de cada capa.

La rodera o deformación permanente es una de las fallas del pavimento que más contribuye a la pérdida de servicio de esta estructura. Las causas para que se

presente el fenómeno de rodera son por un lado los materiales (compactación, forma de la partícula, granulometría, contenido de materia orgánica, etc.) y por otro, la repetición de cargas (Acikgöz y Fauf, 2010).

La deformación permanente también llamada rodera ha sido clasificada en tres categorías (Laaksonen et al., 2004; citados por Korkiala-Tantu, 2008): (a) por desgaste de las capas asfálticas, (b) por compactación y (c) por deformaciones de corte. Por su parte, Dawson y Kolijosa (2004) (citados Korkiala-Tantu, 2008) indican cuatro mecanismos de rodera: (a) compactación, (b) deformación por corte, (c) deformación de la subrasante y (d) rompimiento de las partículas. Ambas referencias concuerdan en que la rodera es producto de la mezcla de estos mecanismos.

1.3. Contribución de las capas del pavimento a la deformación permanente

Aunque la rodera puede ocurrir en cualquier capa del pavimento, los primeros modelos de predicción supusieron que solamente estaba relacionada con la deformación por compresión vertical en la subrasante. Esto fue desarrollado en los años 60's y 70's tomando en cuenta observaciones que se realizaron en pavimentos con capas de asfalto relativamente delgadas, sin embargo, se ha comprobado que la deformación se presenta en todas las capas de la estructura (Muhunthan et al., 2016). Por ejemplo, resultados publicados por la Organización para la Cooperación Económica y Desarrollo (por sus siglas en inglés OECD) (Resistance 1975), indican que los suelos de subrasante (suelo limoso) no muestran fallas por corte durante la aplicación de carga, sin embargo, al mismo tiempo, las magnitudes de rodera se incrementan continuamente a una velocidad constante. La contribución de la subrasante a la rodera total en los pavimentos es más del 30% a 108 ciclos de carga. Esto explica la importancia de las deformaciones que se puedan presentar en la subrasante (Figura 1.1). Las pendientes de las líneas mostradas en la gráfica de deformación contra número de pasadas permanecen constantes hasta un gran número de pasadas.

Respecto a la misma figura, las magnitudes de la pendiente cambian solamente en el punto de quiebre. Lo que indica que el suelo está cerca de la falla. Esto generalmente no sucede en un pavimento ya que se rehabilita cuando la rodera excede ciertos valores. Esto indica que los resultados de la deformación plástica de los primeros ciclos pueden usarse razonablemente, si no con exactitud, para extrapolar las deformaciones plásticas a un número mayor de ciclos. Además, los datos de los primeros ciclos pueden proporcionar la velocidad a la que se presenta la deformación plástica como los describen Thompson y Neumann (1993) (citados por Puppala et al., 1999).

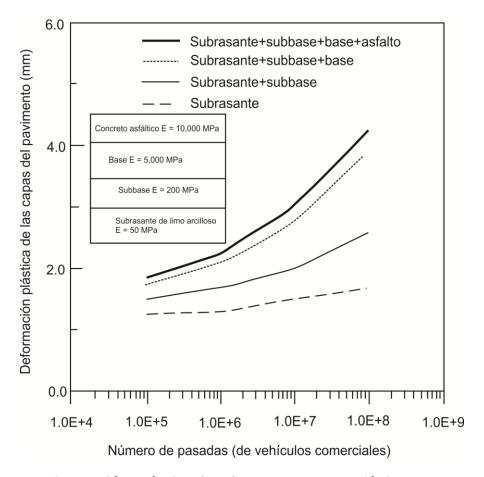


Figura 1.1. Deformación plástica (mm) de la carpeta asfáltica, base y subbase contra el número de pasadas de vehículos comerciales (de estudio de la OECD)

Existen otros reportes como el de Hussan et al. (2013) en el que indican que llevaron a cabo mediciones de perfil transversal en un tramo de carretera de Pakistan. El propósito era determinar cuáles eran las causas del deterioro. En el estudio los autores proponen una metodología para determinar qué capa contribuye al daño tomando como base el análisis de perfiles transversales. Para comprobar su metodología, en el mismo tramo carretero se realizó una trinchera para medir las deformaciones en cada capa. La Figura 1.2 muestra el corte en donde se pueden observar las deformaciones en cada capa. Hussan et al. observaron que el espesor de la carpeta asfáltica era menor en la rodera izquierda y se incrementaba hacia el centro (Figura 1.2a). De forma similar, la Figura 1.2b muestra también que la deformación en la rodera derecha es un problema de la carpeta asfáltica, pero la profundidad es menor con respecto a la rodera izquierda. La Figura 1.2c muestra que las capas de subbase y subrasante no muestran mayor deformación. De estos resultados se puede concluir que existen casos en los que el problema de rodera reflejado en la superficie del pavimento se debe en mayor medida a la falla de la carpeta asfáltica.

Figura 1.2. Medición de rodera en las capas del pavimento

1.4. ¿De qué depende la deformación permanente?

En la literatura se reportan diversos factores que afectan la deformación permanente. A continuación se resumen algunos de ellos.

Efecto del número de repeticiones de carga: En las pruebas de carga repetida de laboratorio, las deformaciones permanentes se reportan con el correspondiente número de cargas repetidas aplicadas. Esto se debe a que se reconoce que la acumulación de la deformación residual varía directamente con el número de repeticiones de carga. En los primeros ciclos de carga, la velocidad de acumulación cambia de forma importante. Sin embargo, después de algunos ciclos, la velocidad de acumulación de la deformación se mantiene constante (Yapa y Lytton, 1988).

Khosla y Singh (citado por Yapa y Lytton, 1988) describen el comportamiento de la deformación residual como un fenómeno que sucede en tres fases: el desarrollo de la deformación transitoria, la fase donde se mantiene estable y la fase terciaria (Figura 1.3). En la primera fase o fase transitoria la velocidad de acumulación de la deformación varía con el número de aplicaciones de carga y se observa al inicio de las pruebas en la fase estable, la acumulación alcanza un valor constante.

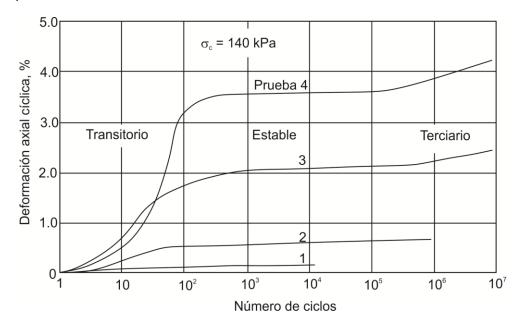


Figura 1.3. Comportamiento de la deformación con el número de ciclos

Como se observa de la gráfica anterior, el desarrollo de la deformación permanente es un proceso gradual y cada repetición contribuye a la acumulación de la deformación. La deformación se estabiliza si el esfuerzo aplicado es bajo, pero si la carga aplicada es relativamente alta, se presenta un incremento abrupto de la deformación. En esta etapa, las partículas del material alcanzan un punto en

donde no soportan más los esfuerzos, lo que conduce a un colapso abrupto (Huvstig, 2010; citado por Acikgöz y Fauf, 2010).

Por su parte, Qiu et al. (1999) llevaron a cabo pruebas de deformación permanente en un suelo tipo CL y observaron que pruebas realizadas a 1,600,000 aplicaciones de carga proporcionaron una deformación axial de 3.29%. Esta prueba duró alrededor de 200 horas. Si la prueba se hubiera terminado a 10,000 ciclos, se hubiera obtenido una deformación de 3.52% y la prueba se hubiera terminado en 2 horas. Los autores concluyeron que, debido a la linealidad entre deformación axial y aplicaciones de carga, se puede apoyar el hecho de que una prueba de deformación puede concluirse en 10,000 ciclos.

Efecto del nivel de esfuerzos: De acuerdo a lo publicado en la literatura, la deformación permanente se incrementa si el esfuerzo desviador se incrementa y el confinamiento se reduce (Werkmeister, 2003; citado por Acikgöz y Fauf, 2010). Además, la relación de esfuerzo (σ_d/σ_3) tiene impacto importante en la deformación permanente como lo indicó Barksdale en 1972 (Figura 1.4).

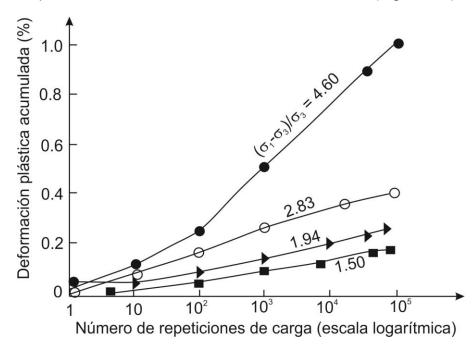


Figura 1.4. Influencia de la relación de esfuerzo en la deformación permanente (Barksdale, 1972).

Efecto de la historia de esfuerzos: El efecto de la historia de esfuerzos, es decir, el orden en el que se han aplicado las cargas, tiene un efecto importante en el desarrollo de la deformación permanente. Ésta es más pequeña si el nivel de esfuerzos se incrementa gradualmente comparado con la aplicación instantánea del nivel de carga más alto (Lepark, 1997; citado por Acikgöz y Fauf, 2010).

Kalcheff y Hicks (1973) (citados por Yapa y Lytton, 1988) observaron que cuando una muestra se sujeta a diferentes etapas de carga que se van incrementando, las deformaciones residuales resultantes son menores que cuando se compara la misma secuencia de carga, pero en orden contrario, es decir, aplicando primeramente la carga mayor. Monismith et al. (1974) encontraron un efecto similar cuando ensayaron una arcilla limosa.

Presión de confinamiento: El confinamiento pareciera tener un efecto insignificante en la acumulación de la deformación permanente como lo indicaron Qiu et al (1999). En sus experimentos, estos investigadores incrementaron la presión de confinamiento de 21 a 41 kPa y la deformación se incrementó

una pequeña cantidad. Los autores indicaron que el incremento en la deformación axial podía deberse a la consolidación gradual de los especímenes (Figura 1.5).

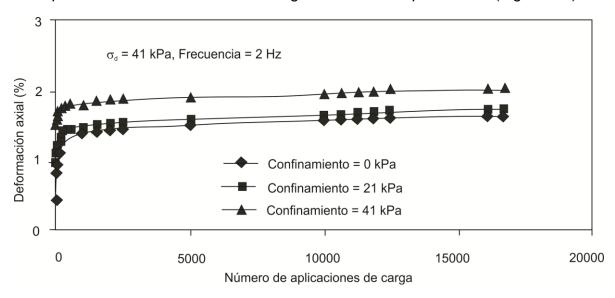


Figura 1.5. Efecto del confinamiento en la deformación axial.

Frecuencia de carga y tiempo de reposo: Qiu et al (1999) también estudiaron el efecto de la frecuencia y el tiempo de reposo en la deformación permanente. Sus pruebas las realizaron con tiempos de reposo de 0.4, 0.9 y 1.9 de segundo y 0.1 s de carga. Esto correspondió a frecuencias de 2, 1 y 0.5 Hz. Sus resultados evidenciaron que las diferencias no son tan grandes como para indicar efecto del periodo de reposo en la acumulación de la deformación. Por lo tanto, los autores postularon que la frecuencia en el rango estudiado no afecta la respuesta de la deformación permanente (Figura 1.6).

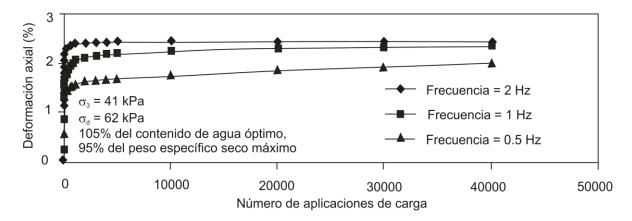


Figura 1.6. Efecto de la frecuencia de carga en la deformación permanente (Qiu et al., 1999)

Densidad del material: Uno de los factores que más afectan la deformación permanente es la densidad o grado de compactación (Lepark, 1997; citado por Acikgöz y Fauf, 2010). Algunos resultados de laboratorio y campo indican que la resistencia a la deformación permanente se incrementa con la compactación (Figura 1.7).

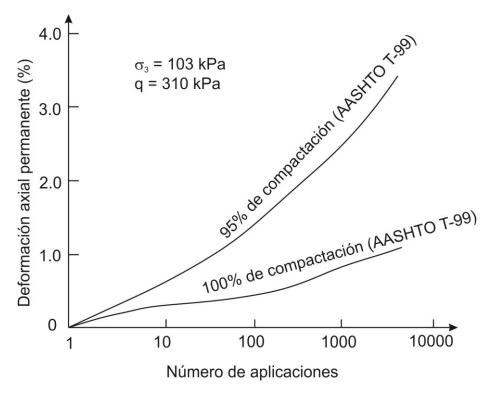


Figura 1.7. Efecto de la densidad en la deformación permanente (Barksdale, 1972; citado por Acikgöz y Fauf, 2010)

El contenido de agua: Werkmeister (2003) (citado por Acikgöz y Fauf, 2010) indica que la existencia de agua en un material puede tener efectos positivos y

negativos en la deformación. Una cantidad de agua adecuada tiene efecto positivo en la resistencia de los materiales no ligados. Por otro lado, un alto contenido de agua causa excesiva presión de poro, lo que conduce a una reducción en rigidez y por lo tanto la deformación permanente se incrementa.

El contenido de finos: Edris y Lytton (1976) (citados por Yapa y Lytton, 1988) ensayaron tres materiales de subrasante con porcentaje de finos (material que pasa la malla No. 200) de 72, 71 y 91% y con porcentajes de arcilla (menor a 2 micras) de 20, 39 y 70%, respectivamente. Aunque el efecto de la arcilla no se mostró por separado, se notó que un suelo con alto contenido de arcilla tenía deformaciones residuales más altas.

Como se puede observar, la deformación permanente depende de varios factores. En este documento se muestra el efecto del contenido de agua y la plasticidad de los finos.

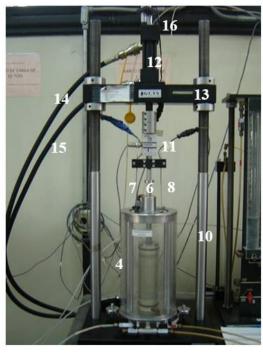
Evaluación de la deformación permanente en una trayectoria de humedecimiento o secado

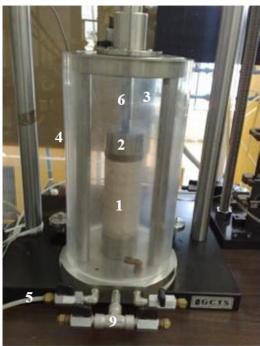
2 Materiales, equipos y procedimientos de prueba

2.1. Descripción del equipo triaxial utilizado

El equipo triaxial cíclico utilizado se compone básicamente de tres unidades (Figura 2.1):

- Unidad de aplicación de carga
- Unidad de regulación de presión
- Unidad de registro de información




Figura 2.1 Unidades que componen el equipo triaxial cíclico.

Unidad de aplicación de carga

La unidad de aplicación de carga consta principalmente de un marco de carga y una cámara triaxial (Figura 2.2). La segunda está construida de acero inoxidable, aluminio anodizado y pared de acrílico transparente; la capacidad en presión

confinante es de 1000 kPa. Las dimensiones de la cámara permiten ensayar especímenes en un rango de 35 mm (1.4") hasta 90 mm (3.54") de diámetro. La medición de la carga axial se efectúa con una celda de carga localizada entre la parte superior de la cámara triaxial y la viga de reacción (Figura 2.2). Los desplazamientos axiales son medidos a través de tres sensores o LVDTs (Linear Variable Differential Transformers) que se encargan de transmitir la magnitud de dichos desplazamientos a la unidad de registro y control de información. Estos elementos se encuentran localizados en la parte externa de la cámara triaxial.

- 1. Muestra
- 2. Cabezal
- Aire
- 4. Cámara triaxial
- Entrada de aire
- 6. Pistón
- LVDT 1
- 8. LVDT 2

- 9. Línea de drenaje
- 10. Marco de carga
- 11. Celda de carga
- 12. Pistón hidráulico
- 13. Viga de reacción
- 14. Línea de alimentación hidráulica
- 15. Línea de retorno hidráulico
- 16. LVDT 3

Figura 2.2. Componentes de la unidad de aplicación de carga.

Algunas de las características de los transductores o sensores que se utilizan para la medición de carga axial, deformación axial y presión de confinamiento son:

- Celda de carga con una capacidad nominal de 450 kg (Figura 2.3a).
- Sensor de desplazamiento axial (LVDT 3) con un rango de ± 25 mm.
 Con este sensor se realiza el control automático del equipo y puede utilizarse también cuando se mide deformación en probetas de bajo

- módulo de resiliencia. Se localiza en la parte más alta del marco de carga (Figura 2.2).
- Sensores de desplazamiento axial (LVDT 1 y 2) con un rango de ± 1.25 mm. Con estos sensores se realizan las mediciones de los desplazamientos para pruebas donde se requieran aplicar amplitudes de carga pequeñas o cuando los materiales son muy rígidos y las deformaciones son pequeñas (Figura 2.3b).

ESPECIFICACIONES

Marca: interface

Modelo: SSM -1000

Capacidad: 1000 lbs

ESPECIFICACIONES

Marca: Macro sensors

Modelo: CD 375-050

Figura 2.3. Sensores instalados en el equipo triaxial cíclico GCTS. Celda de carga y sensor de desplazamiento axial (± 1.25 mm).

Unidad de regulación de presión

Esta unidad consta de un panel con válvulas reguladoras de presiones de confinamiento y vacío. Incluye tres reguladores de presión para el control: manual de presiones, válvula seleccionadora y bomba de vacío tipo venturi.

Unidad de control y adquisición de datos

Esta unidad contiene los controles que permiten accionar el equipo electrónicamente para que opere y a su vez, registre la información generada durante la ejecución de los ensayes. La unidad fue hecha para controlar la adquisición de datos en un equipo de cómputo personal, mediante un programa que tiene integrado. Este programa permite al usuario ejecutar varias pruebas automáticamente, incluye el control automático de los esfuerzos axiales y de la presión de confinamiento, así como, la generación automática de reportes y resultados, etc.

2.2. Materiales y procedimientos de prueba

2.2.1. Muestreo

En el estudio se utilizaron tres materiales. Uno fue muestreado en el estado de Veracruz y los otros dos en las inmediaciones del Instituto Mexicano del Transporte (Figura 2.4).

(a) Material muestreado en el IMT

(b) Material de Veracruz

(c) Banco de materiales Los Cues

Figura 2.4. Materiales muestreados para el estudio

2.2.2. Preparación de los suelos, determinación de propiedades índice y características de compactación

Los tres materiales contenían material con tamaño superior a la malla No. 4, pero en el proyecto solo se utilizó el material que pasó dicha malla.

Después del cribado por la malla No. 4, los materiales se secaron al aire, se cuartearon y se almacenaron. Para determinar las propiedades índice y de compactación se utilizaron los procedimientos listados en la Tabla 2.1.

Tabla 2.1. Procedimientos utilizados para evaluar propiedades índice

Designación de la	Nombre
norma	
ASTM D 1140-17	Determinación de la cantidad de suelo más fino que la malla No. 200.
ASTM C136-14	Análisis granulométrico de agregados gruesos y finos.
ASTM D4318-10	Determinación del límite líquido, límite plástico e índice de plasticidad.
ASTM D854-14	Determinación de la gravedad específica del suelo
ASTM D698-12	Determinación de las características de compactación de un suelo. Proctor
	estándar.

2.2.3. Elaboración y acondicionamiento de especímenes de prueba

2.2.3.1. Compactación de la probeta

Una vez conocidas las condiciones de compactación (γ_{dmáx}, w_{opt}) necesarias para la fabricación de los especímenes de prueba, se procedió a lo siguiente:

- Se dosificaron muestras de 1300 g.
- Se determinó el contenido de agua inicial de las muestras.
- Se agregó el agua necesaria al suelo de tal forma que este alcanzara el contenido de agua óptimo. Después de mezclar el suelo con el agua y obtener una mezcla homogénea, esta se guardó en una bolsa de plástico para dejarla curar por un período de al menos 12 horas (Figura 2.5). Una vez terminado este período, el material estaba listo para compactarse.

Figura 2.5. Proceso de humectación, mezclado y curado de muestras.

El equipo utilizado para la compactación de los especímenes de prueba está formado por un molde metálico bipartido unido por un collarín en la parte superior, ambos sujetados a una base de acero en su parte inferior; un pisón metálico, como lo muestra la Figura 2.6.

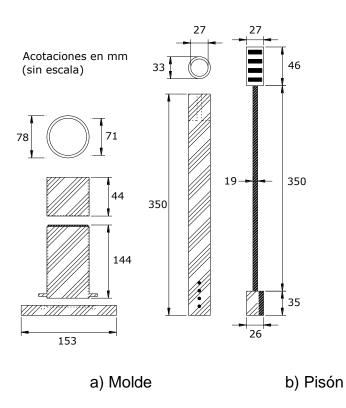


Figura 2.6. Dimensiones del molde y pisón de compactación utilizados.

El procedimiento de compactación del espécimen se describe a continuación:

- Se determinó el volumen del espécimen utilizando las dimensiones del molde y considerando una altura de 5 mm adicionales para poder realizar el enrase.
- Se determinó el peso del material húmedo que sería compactado a partir del volumen calculado y la masa volumétrica húmeda deseada (obtenida de la curva de compactación).
- Se determinó el número de capas "n", a usar para compactar el suelo.
 En este caso, el número de capas utilizadas para la compactación de todos los especímenes fue de 8.
- Se determinó el número de golpes "N" necesarios para producir la energía de compactación deseada (en este caso fue de 6 kg – cm/cm³) y lograr la densidad deseada.
- Una vez realizados los cálculos anteriores, se pesó la cantidad de material requerido por capa (Wcapa) y se vertió en el molde (Figura 2.7). Antes de vertir el material que compone cada una de las capas, es importante colocar un acetato en las paredes del molde y en el fondo del mismo, para facilitar su extracción al término del proceso de compactación.

Figura 2.7. Pesaje y colocación del suelo en el molde de compactación.

• Después de la aplicación de los impactos en la primera capa, se escarificó la superficie y se compactó la siguiente capa (Figura 2.8).

Figura 2.8. Proceso de compactación.

• Después de compactar la última capa, se retiró el collarín, se enrasó la parte superior de la probeta y se extrajo del molde (Figura 2.9).

Figura 2.9. Enrase y extracción del espécimen de prueba.

• Se determinó el peso del espécimen. Se midió su altura y diámetro (Figura 2.10).

Figura 2.10. Pesaje y medición del espécimen compactado.

• Finalmente, la probeta se envolvió con plástico autoadherible. Se colocó en una bolsa de plástico y posteriormente se almacenó en el

cuarto de temperatura controlada para preservar dentro de lo posible las condiciones de humedad adquiridas (Figura 2.11).

Figura 2.11. Empaque de especímenes compactados.

 Con el suelo sobrante de la compactación se determinó el contenido de agua. Con las dimensiones y el contenido de agua determinados, se verificó que el peso volumétrico seco máximo y el contenido de agua fuera el requerido o en su defecto, cumpliera con el rango de variación permisible. En caso contrario, el espécimen fue desechado.

2.2.3.2. Acondicionamiento de especímenes

Una vez que se fabricaron los especímenes necesarios, los que deberían someterse a una trayectoria de secado se les permitió secarse dentro de contenedores de plástico. Los recipientes fueron cubiertos parcialmente con tapas de plástico para permitir el flujo paulatino de aire al interior del mismo, permitiendo con ello un secado lento y evitando así, la generación de grietas en las probetas (Figura 2.12). Este procedimiento trajo como consecuencia una reducción en el contenido de aqua inicial de los especímenes.

Figura 2.12. Acondicionamiento de especímenes (trayectoria de secado).

Por otro lado, a los especímenes que debían someterse a una trayectoria de humedecimiento, se les colocó un disco poroso en la parte inferior y entre la

muestra y el disco, un papel filtro. Una vez colocado el espécimen sobre el disco poroso con el papel filtro, éstos se envolvieron con acrílicos y hule para evitar que perdieran aqua durante el tiempo que durará su ciclo (Figura 2.13).

Figura 2.13. Preparación de especímenes para el proceso de humedecimiento.

Posteriormente, el conjunto disco-espécimen se colocó en un contenedor con agua asegurando que en todo momento el nivel de esta se mantuviera constante, propiciando que la ascensión capilar del agua al interior de la muestra de suelo y al mismo tiempo incrementar su contenido de agua (Figura 2.14).

Figura 2.14. Acondicionamiento de especímenes (trayectoria de humedecimiento).

En este estudio se utilizaron períodos de humedecimiento y secado de 1, 5, 10, 20 y 30 días. Para cada condición se ensayaron en promedio tres especímenes.

Finalizado el ciclo de humedecimiento o secado, los especímenes se retiraron de sus respectivos contenedores y se envolvieron nuevamente con plástico para preservar las características de humedad logradas. Posteriormente, los especímenes se almacenaron por un período de tiempo pertinente (no menor a 15 días) para que las nuevas condiciones de humedad adquiridas durante todo el proceso al que fueron sometidos fueran las mismas en todo el espécimen y de esta manera encontrarse en condiciones para ser ensayados.

2.2.4. Prueba de deformación permanente

- Después del acondicionamiento, el espécimen se colocó en la cámara triaxial.
- Se insertó el pistón al actuador de carga asegurando que se tuviera una conexión firme.
- Se conectó la línea de suministro de presión de aire a la cámara.
- Para llevar a cabo pruebas de deformación permanente no existe un ensaye estándar. Por lo tanto, en este estudio se llevaron a cabo pruebas de deformación aplicando 20,000 ciclos de carga, con un esfuerzo desviador de 97 kPa y una presión de confinamiento de 14 kPa. Este estado de esfuerzos corresponde a la presión de aire más baja y al esfuerzo desviador más alto utilizados en la prueba de módulo de resiliencia de materiales de subrasante.

2.2.5. Prueba de resistencia en compresión no confinada

Para la determinación de la resistencia no drenada (qu) de cada espécimen, se utilizó como referencia el procedimiento descrito en la norma ASTM D 2166. Este método de prueba cubre la determinación de la resistencia a la compresión no confinada de suelos cohesivos, inalterados, remoldeados o reconstituidos mediante compactación en laboratorio. Este método de prueba provee un valor aproximado de la resistencia de suelos cohesivos en términos de esfuerzos totales.

Los especímenes compactados y que terminaron su ciclo de humedecimiento o secado, fueron colocados en la cámara triaxial siguiendo el mismo procedimiento mencionado en el inciso anterior. Una vez montados en el equipo triaxial, se verificó que el cabezal superior hiciera contacto perfectamente con la muestra. Posteriormente, se aplicó la carga al espécimen a una velocidad de deformación de 1.2% por minuto, hasta alcanzar la falla del mismo. Cuando la falla del espécimen era inminente, se procedió a finalizar la prueba. Después de desmontar la probeta, esta se disgregó para determinar su contenido de agua final.

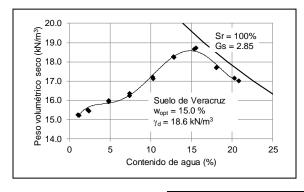
Evaluación de la deformación permanente en una trayectoria de humedecimiento o secado

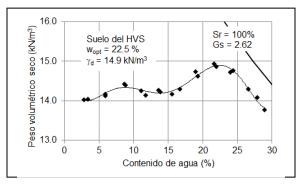
3 Resultados y análisis

3.1. Propiedades índice

Las propiedades índice y la clasificación de los suelos de acuerdo con el Sistema Unificado de Clasificación de Suelos se resumen en la Tabla 3.1.

Tabla 3.1 Propiedades de los suelos en estudio


Suelo		es de stencia	Pasa malla 200	Gs	Clas. SUCS
	LL (%)	IP (%)	(%)		
Suelo de Los Cues	NP	NP	37.0	2.52	SM
Suelo de cimentación del HVS	51	21	43.7	2.62	SM
Suelo de Veracruz	23	8	31.0	2.85	SC


Nota: NP = No plástico; SM = Arena limosa; SC = Arena arcillosa; LL = Límite líquido; IP = Índice de plasticidad; G_s = Peso específico relativo de sólidos.

3.2. Características de compactación

La Figura 3.1 muestra las curvas de compactación Proctor estándar de los dos suelos en estudio. Las gráficas muestran los óptimos de compactación con respecto a la prueba Proctor estándar.

El contenido de agua óptimo y el peso volumétrico seco máximo fueron las condiciones de control en la fabricación de los especímenes, sin embargo, se permitió una variación de $\pm 0.5\%$ en contenido de agua y $\pm 1\%$ en peso volumétrico seco.

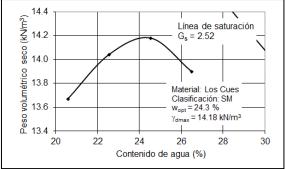


Figura 3.1. Curvas de compactación Proctor estándar de los suelos estudiados

3.3. Resultados típicos de las pruebas de deformación permanente

La prueba de deformación permanente utilizada en este estudio consistió en aplicar 20,000 repeticiones de carga con una intensidad de 384 N (97 kPa) y al mismo tiempo se aplicó una presión confinante de 14 kPa.

La carga se aplicó con señal tipo haversine, con tiempo de aplicación de carga de 0.2 segundos y un tiempo de descanso de 0.8 segundos, de la misma forma que se aplica en la prueba de módulo de resiliencia para materiales de subrasante.

Una vez que se obtuvieron los resultados de prueba, se graficó el número de ciclos contra deformación axial; así se obtuvo una curva como la que se ilustra en la Figura 3.2. De esta se pueden cuantificar las deformaciones, total, permanente y recuperable.

Para llevar a cabo los análisis de la deformación permanente, se tomó el valor registrado en el ciclo 20,000.

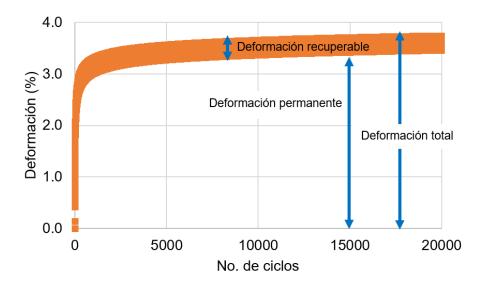


Figura 3.2. Resultado típico de una prueba de deformación a 20 000 repeticiones de carga

3.4. Variabilidad de los resultados de deformación permanente

La confiabilidad de los resultados es un aspecto que se requiere en todo proceso. Sin embargo, es bien sabido que aún cuando un parámetro se determine en muestras similares con el mismo equipo o realizadas por el mismo operador, no siempre se obtendrán resultados idénticos, sino que presentarán cierta variabilidad. Por esto, en la mayor parte de las investigaciones, un parámetro se evalúa en al menos dos muestras y posteriormente se reporta el promedio o los valores medidos.

En esta investigación, la deformación permanente se evaluó en muestras que se secaron o se humedecieron por diferentes periodos de tiempo. Para asegurar mediciones repetibles, la deformación se determinó en al menos tres réplicas. La Figura 3.3 y 3.4 muestran las gráficas de deformación permanente de dos condiciones de contenido de agua. En estas se observan que las pruebas aportaron resultados similares.

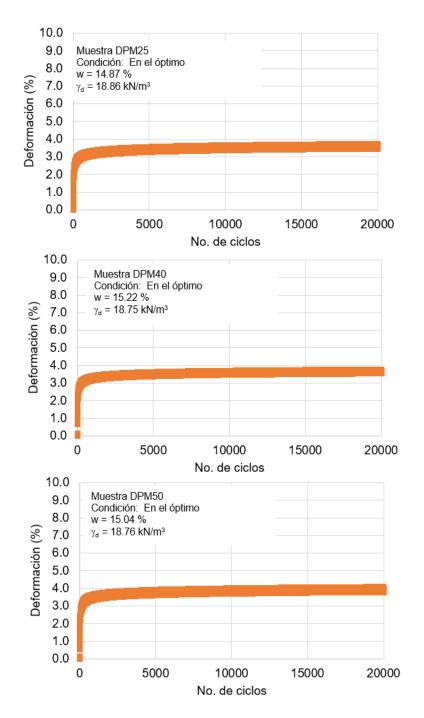


Figura 3.3. Pruebas de deformación permanente en tres muestras ensayadas en condiciones óptimas de compactación

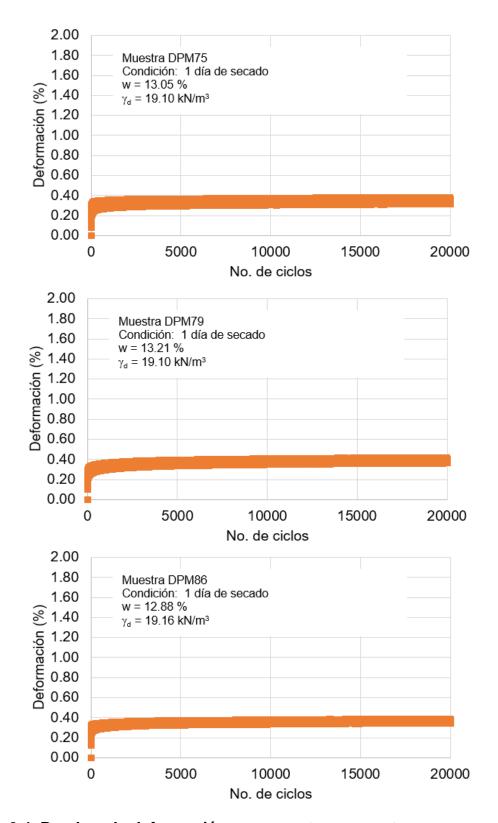


Figura 3.4. Pruebas de deformación permanente en muestras que se secaron durante un día

3.5. Efecto del contenido de agua en la deformación permanente

El agua tiene un efecto importante en la mayor parte de los parámetros mecánicos del suelo. Sin embargo, su efecto depende del tipo de suelo. Por ejemplo, los suelos granulares se ven menos afectados por el agua que los suelos que contienen cantidades importantes de finos plásticos.

En esta investigación se llevaron a cabo pruebas de deformación permanente bajo diferentes condiciones de contenido de agua en tres suelos. Aún cuando dos están clasificados como arena limosa (SM), en uno de ellos la parte fina es plástica mientras que, en el otro, los finos no tienen plasticidad. Esto determinó en gran medida el comportamiento de la deformación permanente como se observará en las siguientes secciones.

Para ilustrar el efecto del contenido de agua (para los tres suelos), se graficaron los resultados de deformación permanente en diferentes condiciones de contenido de agua. Se eligieron los valores más altos, intermedios y los más bajos (Figura 3.5).

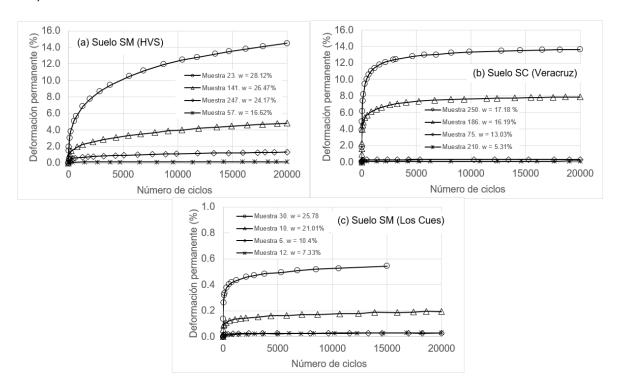


Figura 3.5. Efecto del contenido de agua en la deformación permanente

De la Figura 3.5 se nota que los suelos como la arena arcillosa y la arena limosa con finos plásticos desarrollan deformaciones permanentes superiores a 10% cuando el contenido de agua de agua se incrementa en un 6% (para el suelo del HVS) o en un 2 % aproximadamente para el suelo de Veracruz. En el caso del

suelo de los Cues, las deformaciones permanentes se mantienen en valores inferiores a 1% para los diferentes casos de contenido de agua. Este suelo solo incrementó su contenido de agua en un 1.5% cuando se permitió absorción de la misma durante 20 días.

Por otro lado, si se analizan las curvas de deformación permanente de las muestras con mayor contenido de agua, es interesante notar que en el suelo SC (suelo de Veracruz), la deformación permanente se acumula rápidamente antes de los primeros 5000 ciclos y posteriormente se estabiliza; no así el suelo del HVS, el cual continúa acumulando deformación sin mostrar estabilización.

Para entender el comportamiento anterior se deben analizar varios factores, entre ellos la granulometría de los suelos y la plasticidad. Por ejemplo, el suelo del HVS contiene de todos los tipos de suelo, es decir, arena (con tres tamaños), limo y arcilla, mientras que el suelo de Veracruz está formado en su mayor parte por arena fina, además de porcentajes bajos de limo y arcilla. Se podría creer que como el suelo del HVS es el que tiene materiales de todos los tamaños (suelo bien graduado), podría presentar menos deformación, sin embargo, es el que manifiesta más deformación. La clave aquí es la plasticidad de los finos, ya que el suelo del HVS es el que tiene los finos más plásticos, por tanto, es más propenso a absorber mayores cantidades de agua.

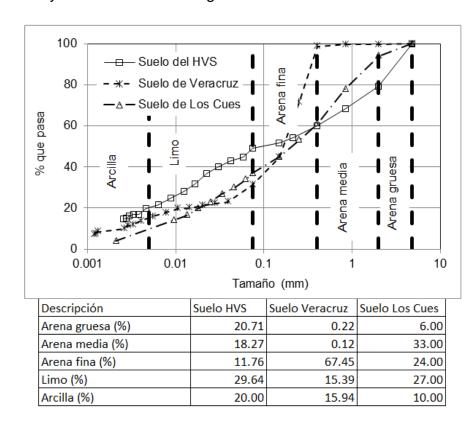


Figura 3.6. Curvas granulométricas de los suelos estudiados

En la Figura 3.5 también se observa que, en un suelo tipo SM, pero con finos no plásticos, la deformación permanente se mantiene en valores inferiores a uno por ciento.

3.6. Relación entre la variación de contenido de agua y la deformación permanente

En varios de los documentos de la literatura, así como, algunos presentados por los autores se ha mostrado que el módulo de resiliencia varía si el contenido de agua de los suelos cambia. En esta investigación se ensayaron varios especímenes sometidos a diferentes periodos de humedecimiento y secado para incrementar o reducir el contenido de agua y posteriormente se sometieron a 20,000 ciclos de carga con confinamiento constante.

La Figura 3.7 muestra las relaciones para los tres tipos de suelos estudiados. De esta figura se observa que el suelo limo arcilloso de Veracruz requiere solo un pequeño incremento en contenido de agua para mostrar un cambio importante en la deformación permanente. Cuando el suelo es más plástico (suelo del HVS) requiere un cambio en contenido de agua más alto para llegar a deformaciones más allá de 10%. Asimismo, el suelo de Los Cues presenta deformaciones muy bajas, pero en este suelo, el contenido de agua no varió más allá de 5%, lo cual también explica las deformaciones tan bajas.

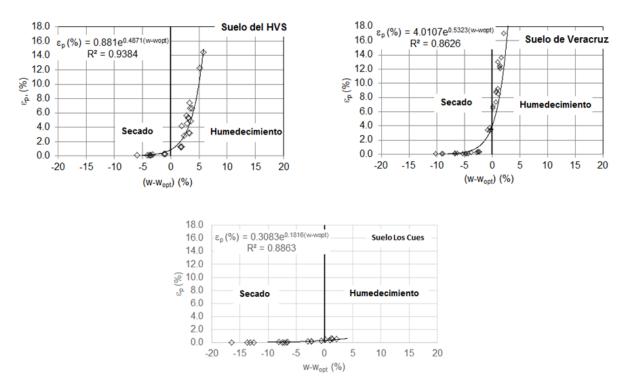


Figura 3.7. Relación entre deformación permanente y cambio en el contenido de agua para los tres suelos

Lo que también se observa en cada una de las gráficas es que la deformación permanente y la variación del contenido de agua puede ajustarse con un modelo exponencial. Es importante mencionar que los resultados se obtuvieron solo para un estado de esfuerzos (σ_3 = 14 kPa y σ_d = 97 kPa). En investigaciones futuras, se presentará un modelo que sea función del estado de esfuerzos.

3.7. Relación entre el módulo de resiliencia y la variación de contenido de agua

De las pruebas de deformación permanente se obtienen la deformación total y permanente para cada uno de los ciclos de carga. Por tanto, la diferencia entre ellas es la deformación recuperable. Esto quiere decir entonces que para todos los ciclos de carga se puede obtener el módulo de resiliencia. En este caso, se determinó el módulo de resiliencia en el último ciclo de prueba y se graficó contra la variación en contenido de agua. A este respecto, se encontró que una vez que los suelos incrementan su contenido de agua por encima del contenido de agua óptimo, el módulo de resiliencia se mantiene aproximadamente constante. Cuando los suelos pierden agua es cuando el módulo de resiliencia presenta sus mayores variaciones para los tres suelos (Figura 3.8). El suelo de Veracruz presenta dispersión importante del módulo de resiliencia para cuando los especímenes se secaron. La relación entre ambos parámetros puede modelarse con una ecuación exponencial.

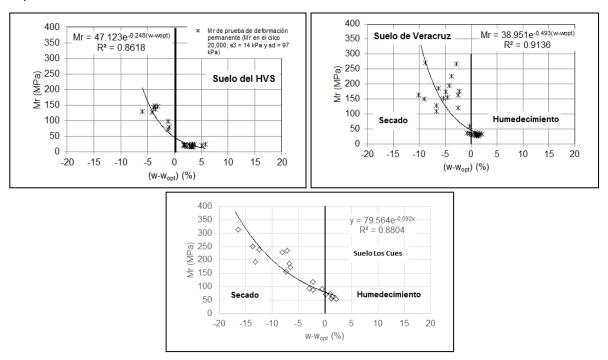


Figura 3.8. Relación entre el módulo de resiliencia y la variación de contenido.

3.8. Relación entre el módulo de resiliencia y la deformación permanente

Otra de las relaciones evaluadas fue la de módulo de resiliencia y la deformación permanente. La relación es importante porque si existe, podría quizá de una prueba de módulo de resiliencia obtenerse el modelo de deformación permanente.

La Figura 3.9 muestra que la relación entre estas dos variables puede ajustarse con un modelo potencial para los tres suelos. En el caso del suelo Los Cues, no se alcanza a apreciar el ajuste porque la deformación es muy pequeña, sin embargo, el R² presenta un valor alto, lo que indica un ajuste adecuado.

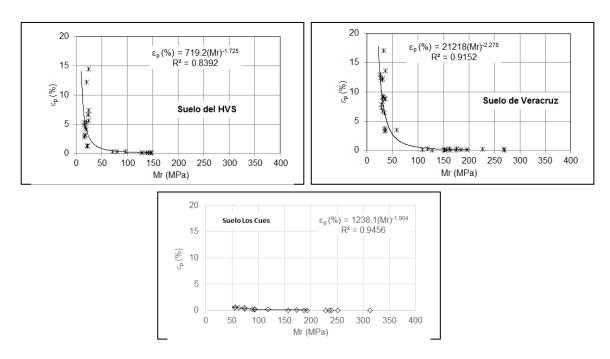


Figura 3.9. Relación entre módulo de resiliencia y deformación permanente

Como se mencionó anteriormente, esta relación solo corresponde a un estado de esfuerzos (σ_3 = 14 kPa y σ_d = 97 kPa). Para poder obtener una mayor confiabilidad en esta relación se requiere evaluar con un mayor número de estados de esfuerzos.

3.9. Relación entre la variación de contenido de agua y la resistencia en compresión simple

Cuando se preparan especímenes para determinar la relación entre módulo de resiliencia, deformación permanente y la variación de contenido de agua, también se preparan probetas para evaluar el cambio en la resistencia en compresión simple. Para los suelos del HVS y el de Veracruz, la resistencia en compresión simple se determinó en probetas independientes; para el suelo de Los Cues, la

resistencia en compresión se determinó al finalizar la prueba de deformación permanente.

La relación entre estas dos variables puede modelarse con una ecuación exponencial. Al igual que el módulo de resiliencia, la resistencia que se incrementa de forma importante cuando el suelo pierde agua; cuando se presenta un incremento en contenido de agua, la resistencia no tiene un cambio importante con respecto a la resistencia que presenta en el contenido de agua óptimo. Por otro lado, el suelo que presenta mayor resistencia es la arena arcillosa de Veracruz, pero también, con un pequeño incremento en contenido de agua, pierde su resistencia de forma abrupta.

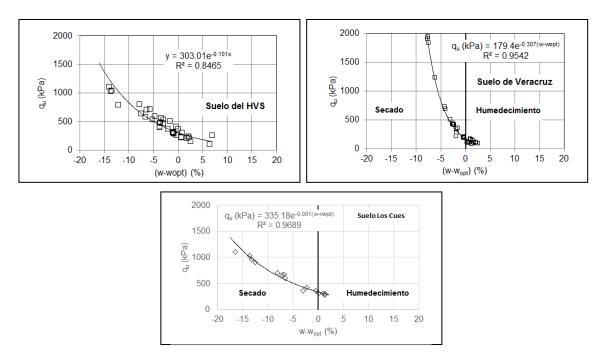


Figura 3.10. Relación entre resistencia en compresión simple y variación en contenido de agua

Finalmente, para el suelo de Los Cues, se obtuvo un modelo de la deformación permanente en función de la variación del contenido de agua y del módulo de resiliencia. Éste se expresó como:

$$\varepsilon_{p}$$
 (%) = 0.0209+0.00212(wf-wi)+1224Mr^{-1.904} (3.1)

 $R^2 = 0.956$

Donde: ϵ_P (%): Deformación permanente; (wf-wi): Cambio en el contenido de agua, en %; Mr: Módulo de resiliencia, en MPa.

Evaluación de la deformación permanente en una trayectoria de humedecimiento o secado

4 Conclusiones

Con los resultados de esta investigación se pueden concluir los siguientes puntos:

- La deformación se acumula rápidamente en los primeros ciclos de carga.
 Sin embargo, a medida que la plasticidad del suelo es más alta, la deformación permanente puede seguirse acumulando rápidamente sin observar un posible estado estable. Esto también se presenta a medida que el contenido de agua es más alto.
- De las pruebas de deformación permanente se pueden obtener tres tipos de deformación: total, permanente y recuperable. Por tanto, se puede también obtener la evolución del módulo de resiliencia durante toda la prueba. Sin embargo, en los análisis solo se calculó el módulo de resiliencia en el ciclo 20,000.
- La relación entre variación de contenido de agua y deformación permanente puede modelarse con una ecuación potencial.
- El suelo de Veracruz incrementa su deformación permanente con un pequeño cambio en contenido de agua.
- Cuando los finos del suelo son más plásticos, requiere una mayor variación de contenido de agua, para incrementar su deformación permanente.
- El módulo de resiliencia y la resistencia en compresión simple pueden relacionarse con un modelo exponencial.
- La deformación permanente y el módulo de resiliencia se pueden ajustar con un modelo potencial. Sin embargo, los resultados solo corresponden al estado de esfuerzos utilizado en las pruebas de deformación permanente.
- La deformación permanente se incrementa abruptamente cuando el suelo adquiere contenidos de agua mayores al óptimo de compactación; esto para el suelo del HVS y de Veracruz.
- El suelo de los Cues presentó valores de deformación permanente inferiores a uno por ciento.
- La resistencia en compresión simple y el módulo de resiliencia no presentan cambios importantes cuando se tiene variación de contenido de agua más allá del contenido de agua óptimo.

• Para el suelo de Los Cues, la deformación permanente se pudo modelar en función de la variación del contenido de agua y del módulo de resiliencia.

Referencias

- Elliot, R. P., Dennis, N. D. y Qiu, Y. (1998). Permanent deformation of subgrade soils. Phase I: A Test Protocol. MBTC FR 1069. January 1998.
- Gidel, G., Hornych, P., Chauvi, J.-J., Breysse, D., y Denis, A. (2001). A new approach for investigating the permanent deformation behavior of unbound granular material using repeated load triaxial apparatus. Bulletin Des Laboratories Des Ponts et Chausséss. 233. July-August 2001. Ref. 4359. Pp. 5-21.
- Acikgöz, O. y Rauf, R. (2010). Analysis of parameters Affecting Permanent Deformtion in Road Pavements. Based on Measurements Data from LPTT-Roads. Master of Science Thesis in Geo and Water Engineering. Chalmers University of Technology. Sweden, 2010.
- Cheung, L. W. (1994). Laboratory Assessment of pavement foundation materials. phD Thesis. Nottinham University. March, 1994.
- Muhunthan, B., Ramanoshi. S., iu, Y., y Sutharsan, S. (2016). Modeling the deformation of unsaturated granular pavement subgrade materials. Engineering & Software Consultants. www.pooledfund.org/Document/Download/6319 (consultado el 2 de marzo de 2018).
- Nguyen, B. T. y Mohajerani, A. (2015). The dynamic behavior of some fine-grained subgrade soils under traffic loading. Australian Geomechanics. Volume 50. No. 2. June 2015. Consultado en https://australiangeomechanics.org/wp-content/uploads/2017/05/AGS_Journal-Vol50-02_04.pdf (2 de marzo de 2018.).
- Ling, X., Li, P., Zhang, F., Zhao, Y., Li, Y., y An, L. (2017). Permanent deformation characteristics of coarse grained sopils under train-induced repeated load. Advances in Materials Science and Engineering. Volume 2017.
- Puppala, J., Mohammad, L. N. y Allen, A. (1999). Permanent deformation characterization of subgrade soils from RLT Test. Journal of Materials in Civil Engineering. Vol. II. No. 4. November, 1999.
- Qiu, Y., Dennis, N. D., y Elliot, R. P. (1999). Deformation characteristics of subgrade soil under repeated loading. Geotechnical Engineering Journal. Vol. 30, No. 2. August 1999.

Hussan S., Kamal M. A., Khan M. B., Irfan M., and Hafeez I. (2013). Determining the Contribution of Different Structural Layers of Asphalt Pavement System to Rutting Using Transverse Profile Analysis. *American Journal of Civil Engineering and Architecture* 1, no. 6: 174-180. doi: 10.12691/ajcea-1-6-7.

Yapa, K. A. S. y Lytton, R. (1988). A simplified mechanistic rut depth prediction procedure for low-volume roads. Reporte FHWA/TX-89/473-1. Texas Department of Highways and Public Transportation.

Anexo 1. Características iniciales y finales de los especímenes de prueba

Suelo del HVS

			Condici	ones inici	ales			Condiciones finales							
Muestra No.	Ensaye	dprom, cn	hprom (cm	Peso (g)	w (%)	γ _d (kN/m	dprom, cn	hprom (cm	Peso (g)	w (%)	γ_d (kN/m ³)	Mr (Mpa)	w-wopt	ε _n (%)	et (%)
56	Def	7.086	14.393	1054.76	22.61	14.868	7.054	14.239	1017.23	18.42	15.14	128	-4.19	0.14	
57	Def	7.074	14.391	1056.25	22.57	14.9465	7.039	14.238	1003.51	16.62	15.24	129	-5.95	0.128	
216	Def	7.092	14.401	1053.49	22.85	14.7878	7.065	14.284	1025.15	18.98	15.09	142	-3.87	0.14	
217	Def	7.089	14.377	1049.44	22.85	14.768	7.074	14.269	1019.58	19.24	14.96	148	-3.61	0.14	
213	Def	7.091	14.395	1059.8	22.97	14.8722	7.069	14.281	1037.01	19.43	15.20	138	-3.54	0.13	
214	Def	7.099	14.401	1059.67	22.97	14.8307	7.057	14.297	1038.16	19.82	15.20	146	-3.15	0.17	
166	Def	7.078	14.365	1057.3	22.97	14.9228	7.103	14.33	1048.5	21.8	14.87	97	-1.17	0.30)
21	Def	7.096	14.389	1057.65	22.42	14.8939	7.156	14.519	1104.24	27.6	14.54	21	5.18	12.25	i
23	Def	7.089	14.398	1053.26	22.31	14.8655	7.15	14.52	1100	28.12	14.45	24	5.81	14.47	•
96	Def	7.1	14.363	1056.26	22.07	14.9272	7.119	14.426	1085.65	25.45	14.78			7.38	;
97	Def	7.085	14.377	1043.65	22.02	14.8031	7.12	14.442	1076.25	25.75	14.60	23	3.73	6.65	
105	Def	7.095	14.367	1057.48	22.07	14.9613	7.131	14.459	1090.47	25.56	14.75	23	3.49	6.68	:
106	Def	7.096	14.379	1062.45	22.19	15.0001	7.118	14.457	1091.63	24.95	14.90	24	2.76	5.60	1
132	Def	7.089		1063.74	22.6		7.108	14.463	1089.75	25.74		20		5.38	;
141	Def	7.09		1062.02	22.95		7.129	14.533	1094.67	26.47		16		4.84	
146	Def	7.078		1055.25	22.98	14.8678	7.134	14.525	1088.07	26.06				5.30	1
147	Def	7.089		1056.65	22.85	14.8437	7.138	14.516	1085.16	25.8		18		4.50	1
178	Def	7.091		1061.66	22.8		7.13	14.494	1087.17	25.17		16		2.87	_
187		7.088		1054.91	22.75	14.853	7.112	14.449	1076.37	24.74		19		4.16	-
266		7.089		1059.52	22.34	14.945	7.138	14.528	1086.6	25.63			3.29	3.13	_
267		7.091		1052.38	22.34	14.87	7.158	14.476	1080.72	25.6			3.26	3.21	_
241		7.094		1056.86	22.27	14.9396	7.136	14.473	1075.49	24.12			1.85	1.24	+
247		7.086		1058.52	22.22	14.9926		14.475	1075.77	24.17			1.95	1.32	+
249		7.099		1064.13	22.22		7.14	14.483	1081.87	23.98			1.76	1.34	_
	Def	7.09	14.393		22.66		7.108	14.388	1051.11	21.5			-1.16	0.30	_
272	Def	7.089	14.401	1059.14	22.56	14.9149	7.103	14.416	1056.07	21.6	14.91	80	-0.96	0.29	1

RESUMEN DE LAS CARACTERÍSTICAS DE RESISTENCIA EN COMPRESIÓN

	Condiciones iniciales C								iones fir	nales		w-wopt	
Muestra No.	Ensaye	dprom, cn	hprom (cm	Peso (g)	w (%)	γ _d (kN/m	dprom, cn	hprom (cm	Peso (g)	w (%)	γ_d (kN/m ³)	qu (kpa)	
270	CS	7.09	14.383	1055.18	22.66	14.8614	7.121	14.391	1052.6	21.59		307	-1.07
272	CS	7.089	14.401	1059.14	22.56	14.9149	7.103	14.416	1056.1	21.6	14.91	311	-0.96
273	CS	7.091	14.395	1056.39	22.56	14.874	7.093	14.39	1053.1	21.74	14.92	289	-0.82
276	CS	7.094	14.399	1059.32	22.12	14.9522	7.106	14.387	1056.3	21.31	14.97	288	-0.81
171	CS	7.089	14.403	1056.94	23.44	14.7758	7.046	14.246	994.98	15.61	15.20	796	-7.83
172	CS	7.085	14.401	1058.94	23.44	14.8225	7.037	14.211	971.94	11.3	15.50	789	-12.14
198	CS	7.091	14.382	1056.38	22.98	14.8364	7.105	14.261	1040.2	20.92	14.93	371	-2.06
218	CS	7.086	14.395	1059.72	22.95	14.8945	7.053	14.269	1038.7	20.06	15.22	462	-2.89
219	CS	7.089	14.399	1058.27	22.95	14.8574	7.064	14.251	1011.9	17.26	15.16	711	-5.69
232	CS	7.086	14.405	1052.83	22.92	14.791	7.064	14.291	1027.2	19.58	15.05	562	-3.34
112	CS	7.096	14.368	1051.55	22.79	14.785	7.058	14.258	1024.3	19.86	15.03	534	-2.93
116	CS	7.093	14.369	1066.98	23	14.988	7.067	14.247	1039.4	19.4	15.28	481	-3.6
122	CS	7.092	14.399	1058.3	22.68	14.878	7.061	14.248	1032.3	19.01	15.25	404	-3.67
123	CS	7.094	14.399	1054.88	22.68	14.8215	7.054	14.284	1024.1	18.99	15.12	466	-3.69
125	CS	7.096	14.406	1063.82	22.04	15.0097	7.066	14.316	1033.2	18.35	15.26	397	-3.69
66	CS	7.099	14.401	1059.54	22.03	14.9431	7.055	14.256	1014.5	16.9	15.28	531	-5.13
73	CS	7.099	14.386	1056.6	22.58	14.8503	7.053	14.256	1004.1	16.2	15.22	701	-6.38
74	CS	7.099	14.392	1066.82	22.33	15.0183	7.049	14.249	1027.1	17.67	15.40	586	-4.66
80	CS	7.097	14.389	1063.3	22.63	14.9437	7.041	14.257	1008.8	16.08	15.36	581	-6.55
82	CS	7.095	14.405	1065.39	22.63	14.9648	7.035	14.256	1003.4	15.19	15.42	639	-7.44
32	CS	7.095	14.393	1065.45	22.92	14.9428	7.034	14.216	944.51	8.9	15.40	1101	-14.02
43	CS	7.089	14.395	1059.58	22.92	14.8836	7.09	14.209	942.61	9.28	15.08	1026	-13.64
51	CS	7.098	14.396	1052.9	22.36		7.02	14.231	938.34	8.97	15.34		-13.39
240	CS	7.089	14.356	1053.53	22.93	14.8376	7.086	14.305	1043.1	21.28	14.96	502	-1.65
246	CS	7.097	14.356	1059.3	22.33	14.9583	7.108	14.378	1057.8	21.99	14.91	406	-0.34
73	CS	7.099	14.386	1056.6	22.58		7.085	14.428	979.39	29.62	13.03	254	7.04
263	CS	7.092		1058.67	22.65		7.163	14.4	1061.5	22.68	14.63		0.03
181	CS	7.089	14.384	1055.2	22.96		7.134	14.439	1065.7	23.74	14.64		
188	CS	7.088	14.389				7.102	14.464	1076.6	25.34	14.71	154	
149	CS	7.083	14.39	1058.8	22.85		7.157	14.514	1077.7	24.69	14.52		1.84
94	CS	7.098	14.393		22.07	15.0191	7.143	14.379	1064.9	21.84	14.88	258	-0.23
107	CS	7.099	14.375		22.19	14.9215	7.12	14.406	1066.3	22.85	14.84	221	0.66
108	CS	7.089	14.354	1059.8	22.19		7.187	14.398	1069.5	22.85	14.62		0.66
1	CS	7.103		1056.66	22.8	14.7934	7.126	14.46	1080.1	25.05	14.69	218	2.25
20	CS	7.084		1059.32	22.08	15.0108	7.167	14.547	1112.4	28.57	14.46		
27	CS	7.1	14.405	1066.72	22.53	14.9746	7.162	14.489	1087.6	24.72	14.66	239	2.19

Suelo de Veracruz

RESUMEN DE DEFORMACIÓN PERMANENTE

LIN DE DEI O	RMACION I	ERIVIAINE		ones inici	ales			Condi	ciones fir	nales					
Muestra No.	Ensaye	dprom, cn	hprom (cm	Peso (g)	w (%)	γ _d (kN/m	dprom, cr	hprom (cn	Peso (g)	w (%)	γ_d (kN/m ³)	Mr (Mpa)	w-wopt	ε _p (%)	et (%)
25	Def	7.092	14.316	1251.01	15.68	18.7595	7.084	14.328	1247.48	14.87	18.87	36	-0.81	3.47	3.76
40	Def	7.086	14.378	1247.5	15.45	18.6949	7.084	14.329	1243.51	15.22	18.75	59	-0.23	3.548	3.727
50	Def	7.065	14.379	1251.01	15.47	18.8546	7.092	14.353	1247.32	15.04	18.76	35	-0.43	3.80	4.10
75	Def	7.066	14.372	1250.38	15.53	18.8391	7.065	14.181	1223.51	13.03	19.10	120	-2.5	0.32	0.39
79	Def	7.067	14.404	1247.73	15.49	18.7586	7.048	14.208	1221.87	13.21	19.10	176	-2.28	0.36	0.42
86	Def	7.056	14.338	1249.81	15.43	18.9451	7.063	14.148	1222.32	12.88	19.16	162	-2.55	0.35	0.40
5	Def	7.086	14.364	1252.65	15.62	18.7628	7.055	14.149	1208.68	11.32	19.26	196	-4.3	0.14	0.19
7	Def	7.101	14.338	1250.11	15.5	18.6989	7.05	14.117	1210.26	11.72	19.28	227	-3.78	0.23	0.27
21	Def	7.051	14.329	1249.93	15.55	18.966	7.045	14.136	1220.65	12.7	19.28	268	-2.85	0.26	0.29
44	Def	7.07	14.39	1252.16	15.58	18.8129	7.028	14.136	1197.01	10.25	19.42	153	-5.33	0.13	0.19
57	Def	7.075	14.396	1249.83	15.35	18.7809	7.025	14.164	1199.98	10.73	19.36	156	-4.62	0.13	0.20
65	Def	7.077	14.38	1251.32	15.38	18.8087	7.004	14.111	1196.64	10.51	19.54	175	-4.87	0.10	0.15
99	Def	7.079	14.377	1248.67	15.49	18.7443	7.002	14.142	1184.18	8.78	19.61	109	-6.71	0.17	0.27
108	Def	7.079	14.372	1252.74	15.45	18.8185	7.02	14.138	1187.77	8.77	19.58	128	-6.68	0.10	0.19
114	Def	7.088	14.388	1255.69	15.19	18.8364	7.001	14.151	1194.09	8.94	19.74	185	-6.25	0.15	0.21
210	Def	7.055	14.352	1240.11	15.49	18.7753	6.971	14.008	1126.51	5.31	19.63	163	-10.18	0.12	0.18
212	Def	7.038	14.385	1245.02	15.49	18.8974	6.986	14.05	1149.79	6.43	19.68	151	-9.06	0.11	0.18
218	Def	7.07	14.417	1242.88	15.47	18.6563	6.986	14.05	1149.79	6.62	19.64	270	-8.85	0.07	0.10
121	Def	7.07	14.378	1247.26	15.43	18.7793	7.066	14.279	1241.55	15.04	18.91	35	-0.39	3.37	3.66
131	Def	7.08	14.398	1249.51	15.5	18.7226	7.082	14.346	1250.38	15.66	18.77	31	0.16	6.75	7.16
137	Def	7.085	14.362	1248.09	15.45	18.7299	7.086	14.334	1249.05	15.52	18.76	34	0.07	6.48	6.87
141	Def	7.062	14.365	1249.12	15.48	18.8588	7.1	14.309	1256.62	16.19	18.73	37	0.71	8.77	9.13
142	Def	7.053	14.336	1247.86	15.48	18.9261	7.117	14.294	1256.31	16.52	18.60	32	1.04	9.25	9.65
151	Def	7.064	14.357	1247	15.52	18.8201	7.1	14.323	1255.4	16.32	18.67	35	0.8	8.88	9.26
270	Def	7.074	14.407	1238.03	15.49	18.5721	7.091	14.317	1241.44	16.47	18.49	27	0.98	12.98	13.48
283	Def	7.066	14.377	1235.38	15.49	18.6131	7.067	14.301	1241.67	16.79	18.59	31	1.3	12.36	12.78
224	Def	7.072	14.371	1238.97	15.47	18.6465	7.071	14.34	1253.52	17.51	18.58	33	2.04	17.05	17.46
225	Def	7.066	14.335	1240.45	15.47	18.7475	7.085	14.388	1248.52	16.94	18.46	30	1.47	12.07	12.50
240	Def	7.064	14.448	1241.07	15.5	18.6159	7.077	14.389	1247.48	16.87	18.50	26	1.37	12.47	12.97
250	Def	7.069	14.412	1239.89	15.5	18.6183	7.093	14.377	1250.13	17.18	18.42	36	1.68	13.62	13.98
172	Def	7.069	14.451	1253.88	15.5	18.7775	7.074	14.402	1259.51	16.16	18.79	29	0.66	7.34	7.79
174	Def	7.056	14.338	1246.03	15.49	18.878	7.077	14.328	1254.97	16.58	18.74	31	1.09	8.47	8.89
182	Def	7.07	14.392	1250.48	15.28	18.8339	7.062	14.376	1264.37	16.89	18.84	32	1.61	9.12	9.52
186	Def	7.059	14.377	1249.12	15.3	18.8885	7.097	14.352	1254.18	16.19	18.65	29	0.89	7.89	8.34

RESUMEN DE LAS CARACTERÍSTICAS DE LAS PRUEBAS DE COMPRESIÓN SIMPLE

IEN DE LAS C	AINACILIN			ones inici		VII IXLOI		Condi		w-wopt			
Muestra No.	Ensaye	dprom. cr	hprom (cm			γ _d (kN/m	dprom. cn	hprom (cm			γ_d (kN/m ³)	gu (kPa)	
69	CS	7.079		1249.77	15.48	18.752		14.314		15.18	18.79	204	-0.3
74	CS	7.06	14.339	1248.38	15.53	18.8843	7.079	14.291	1241.7	15.11	18.81	221	-0.42
77	CS	7.061	14.365	1250.95	15.44	18.8983	7.083	14.308	1245.7	15.14	18.83	209	-0.3
84	CS	7.078	14.367	1250.75	15.49	18.7939	7.064	14.292	1244.8	14.97	18.96	213	-0.52
87	CS	7.055	14.383	1251.5	15.43	18.9168	7.062	14.346	1246.3	15.02	18.92	203	-0.41
14	CS	7.062	14.314	1248.8	15.52	18.9146	7.053	14.187	1227.4	13.62	19.12	293	-1.9
26	CS	7.06	14.377	1249.68	15.68	18.8296	7.064	14.213	1229.4	13.71	19.04	228	-1.97
39	CS	7.053	14.352	1247.7	15.48	18.9026	7.064	14.219	1224	13.45	18.99	349	-2.03
32	CS	7.078	14.366	1253.85	15.65	18.8157	7.053	14.176	1225.7	12.83	19.24	440	-2.82
51	CS	7.066	14.384	1251.98	15.47	18.8573	7.057	14.217	1225.4	12.96	19.14	433	-2.51
53	CS	7.072	14.37	1253.49	15.48	18.8647	7.047	14.181	1227.3	13.01	19.26	425	-2.47
54	CS	7.073	14.382	1255.4	15.48	18.8724	7.043	14.194	1227	12.8	19.30	457	-2.68
58	CS	7.074	14.387	1249.5	15.21	18.8158	7.046	14.209	1229.1	13.58	19.16	372	-1.63
94	CS	7.077	14.425	1247.86	15.49	18.6804	7.01	14.125	1198.8	11.29	19.38	698	-4.2
96	CS	7.062	14.409	1252.6	15.49	18.852	7.006	14.129	1203.6	11.16	19.50	743	-4.33
117	CS	7.077	14.397	1250.01	15.38	18.7668	7.038	14.202	1213.3	12.18	19.20	523	-3.2
198	CS	7.064	14.355	1246.92	15.4	18.8411	6.991	14.068	1162	7.8	19.58	1850	-7.6
201	CS	7.063	14.377	1244.27	15.78	18.716	6.963	14.038	1160.7	8.09	19.71	1954	-7.69
207	CS	7.042	14.427	1243.31	15.43	18.8049	6.983	14.041	1170.1	9.13	19.56	1246	-6.3
213	CS	7.088	14.42	1246.72	15.49	18.6119	6.969	14.027	1156.8	7.62	19.71	1917	-7.87
122	CS	7.057	14.354	1245.39	15.5	18.8403	7.102	14.369	1250.1	16.05	18.56	124	0.55
128	CS	7.082	14.386	1245.94	15.4	18.6904	7.08	14.386	1255.1	16.49	18.66	97	1.09
132	CS	7.068	14.358	1246.68	15.5	18.7959	7.101	14.368	1252.1	15.95	18.62	119	0.45
134	CS	7.069	14.398	1251.56	15.5	18.8118	7.099	14.427	1255.9	15.87	18.62	125	0.37
135	CS	7.08	14.391	1250.16	15.5	18.7415	7.079	14.376	1254.7	16	18.75	125	0.5
143	CS	7.073	14.381	1246.53	15.57	18.7258	7.104	14.376	1260.6	16.05	18.70	115	0.48
147	CS	7.067	14.357	1249.61	15.5	18.8468	7.094	14.363	1258	15.75	18.78	129	0.25
156	CS	7.068	14.369	1248.42	15.5	18.8078	7.078	14.346	1257	15.88	18.85	122	0.38
159	CS	7.076	14.395	1247.58	15.49	18.7204	7.101	14.389	1255.9	15.94	18.65	130	0.45
164	CS	7.054	14.39	1246.86	15.42	18.8444	7.097	14.4	1256.3	16.19	18.62	124	0.77
257	CS	7.057	14.434	1242.04	15.49	18.6871	7.091	14.375	1244.1	16.4	18.47	182	0.91
268	CS	7.068	14.38	1240.46	15.49	18.6752	7.078	14.306	1243.1	16.5	18.60	176	1.01
277	CS	7.074	14.421	1239.29	15.49	18.573	7.088	14.317	1244.6	16.83	18.50	161	1.34
289	CS	7.06	14.408	1237.67	15.5	18.6375		14.349	1246.9	17.12	18.56	119	1.62
223	CS	7.07	14.387	1241.02	15.4	18.6785	7.101	14.349	1246.3	16.72	18.43	150	1.32
229	CS	7.087	14.377	1240.65	15.34	18.6061	7.078	14.363	1253.1	17.35	18.54	128	2.01
233	CS	7.069	14.397	1240.71	15.48	18.6532	7.122	14.44	1254.5	17.88	18.15	104	2.4
236	CS	7.064	14.412	1242.2	15.52	18.6761	7.063	14.482	1260.4	17.54	18.54	105	2.02

Suelo de Los Cues

	wi (%)	Peso (g)	dprom (cm)	hprom (cm)	γ_d (kN/m ³)	w _f (%)	Peso, g	dprom, cm	hprom, cm	γ_d , kN/m ³	ε _p (%)	q _u (kPa)	εt (%)	wf-wi (%)	Mr (Mpa)
sr30h10	23.89	999.3	7.091	14.419	13.90	24.02	1002.14	7.064	14.475	13.97	0.499	306.8	0.648	0.130	73
sr30h11	23.91	1002.7	7.079	14.416	13.99	23.39	1000.87	7.056	14.514	14.02	0.239	362.8	0.356	-0.520	92
sr20h29	23.52	1004.2	7.091	14.429	14.00	24.92	1017.87	7.104	14.468	13.94	0.523	300	0.706	1.400	63
sr20h30	23.69	992.51	7.092	14.457	13.78	25.78	1011.74	7.077	14.505	13.83	0.544		0.758	2.090	55
sr10h14	24.11	1004.56	7.101	14.424	13.90	25.1	1014.35	7.083	14.514	13.91	0.343	307.1	0.481	0.990	74
sr10h15	24.13	1004.67	7.095	14.392	13.95	25.33	1015.47	7.058	14.462	14.05	0.608	283.1	0.81	1.200	56
sr5h18	24.09	1007.76	7.069	14.363	14.13	21.79	992.58	7.071	14.38	14.16	0.157		0.246	-2.300	119
sr1h10	23.98	991.85	7.082	14.393	13.84	21.01	975.6	7.078	14.478	13.88	0.198	360.6	0.313	-2.970	94
srdin30s-05	23.48	999.9	7.091	14.39	13.98	9.83	889.97	7.078	14.39	14.04	0.032	1033.1	0.068	-13.650	251
srdin30s-12	23.82	995.9	7.095	14.395	13.86	7.33	861.83	7.061	14.404	13.97	0.031	1107.4	0.059	-16.490	313
sr20h02	24.16	1004.84	7.105	14.411	13.90	11.66	908.02	7.08	14.419	14.05	0.044	900	0.084	-12.500	240
sr20h06	23.59	994.62	7.075	14.405	13.94	10.4	889.61	7.074	14.392	13.98	0.029	964.6	0.075	-13.190	193
sr1005	23.68	993.12	7.092	14.435	13.81	15.55	931.47	7.046	14.43	14.05	0.054	700	0.094	-8.130	228
sr1010	23.3	988.68	7.094	14.41	13.81	16.14	933.39	7.094	14.415	13.84	0.038	666.6	0.077	-7.160	235
sr5s01	23.36	994.92	7.075	14.407	13.97	21.06	977	7.075	14.45	13.94	0.209	424.7	0.331	-2.300	89
sr5s06	23.47	986.9	7.079	14.38	13.85	16.69	934.26	7.084	14.392	13.85	0.049	676.6	0.1	-6.780	187
sr1s02	23.22	987.7	7.092	14.381	13.84	15.79	933.46	7.084	14.42	13.91	0.049		0.109	-7.430	157
sr1s12	24.01	995	7.087	14.389	13.87	17.48	943.55	7.084	14.41	13.87	0.08	601.5	0.135	-6.530	173

Evaluación de la deformación permanente en una trayectoria de humedecimiento o secado

Km 12+000 Carretera Estatal 431 "El Colorado-Galindo" Parque Tecnológico San Fandila Mpio. Pedro Escobedo, Querétaro, México CP 76703 Tel +52 (442) 216 9777 ext. 2610 Fax +52 (442) 216 9671

publicaciones@imt.mx

http://www.imt.mx/

Esta publicación fue desarrollada en el marco de un sistema de gestión de calidad certificada bajo la norma ISO 9001:2015