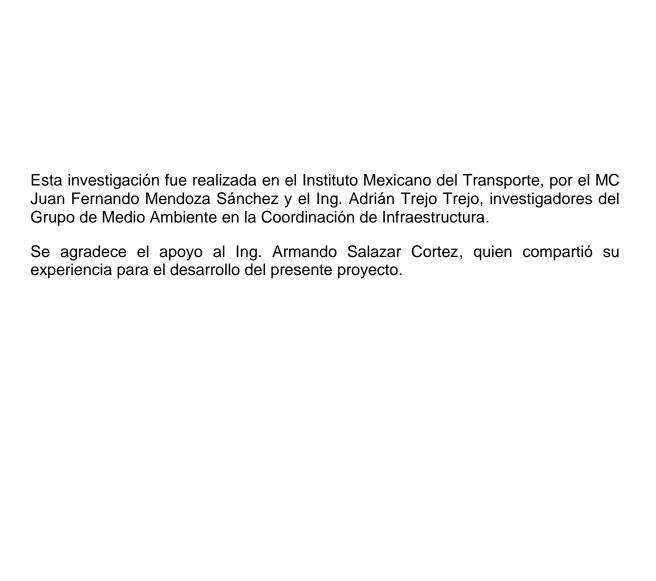


Certificación ISO 9001:2008 ‡

Construcción de la línea base de emisiones de CO₂ del transporte de carga en México


Juan Fernando Mendoza Sánchez Adrián Trejo Trejo

> Publicación Técnica No. 425 Sanfandila, Qro., 2015

SECRETARÍA DE COMUNICACIONES Y TRANSPORTES INSTITUTO MEXICANO DEL TRANSPORTE

Construcción de la línea base de emisiones de CO₂ del transporte de carga en México

Publicación Técnica No. 425 Sanfandila, Qro., 2015

Contenido

Resumen		iv
Abstract		vi
Resumen	Ejecutivo	viii
Introducción		1
Capítulo 1.	Antecedentes	5
Capítulo 2.	Metodología para el diseño de la línea base de las emisiones de CO ₂ del transporte de carga	19
Capítulo 3.	Desarrollo de la línea base de las emisiones de ${\rm CO_2}$ del transporte de carga	37
Capítulo 4.	Modelado de la línea base de las emisiones de ${\rm CO_2}$ del transporte de carga	83
Conclusiones		89
Bibliografía		93

Resumen

La presente investigación se llevó a cabo con el objeto de construir una línea base de las emisiones de dióxido de carbono (CO₂) que genera la operación del transporte de carga en los corredores carreteros de México.

La metodología utilizada se basa en el modelo HDM-4, por lo que el método es una estimación de emisiones de abajo hacia arriba (*Bottom-Up*), el cual incluye las variables del camino, tránsito y medio ambiente, entre otras. La estimación de emisiones se realizó a partir del total de vehículos que circulan por las carreteras que integran cada corredor, así como de aquellas unidades destinadas al transporte de mercancías.

La línea base se construyó mediante la utilización de indicadores ambientales de presión en términos de las emisiones contaminantes producidas por cada kilómetro que integran los corredores carreteros.

Una vez definida la línea base, las emisiones en los principales corredores de transporte se modelaron —con base en sistemas de información geográfica (SIG)— las emisiones en los principales corredores de transporte y se pronosticaron para todos los corredores las emisiones de dióxido de carbono que se tendrán para los años 2020, 2030 y 2050.

Esta modelación será de gran utilidad para analizar las diferentes estrategias que se deseen implementar en favor de la reducción de emisiones de gases de efecto invernadero (GEI) en el transporte de carga, así como para evaluar el impacto que tendrán las diversas prácticas mundiales de mitigación del cambio climático.

Abstract

This research was carried out to build a baseline of carbon dioxide emissions generated by the operation of freight transport within Mexican road corridors.

The methodology used to estimate emissions is based on HDM-4 model, and is considered as a bottom-up method, which includes variables of road, traffic, and environment, among others. These estimates on emissions were performed based on the total amount of vehicles traveling on roads that make up each corridor, and those units used for the transport of goods.

The baseline was constructed using environmental indicators of pressure in terms of pollutant emissions per kilometer that integrates highway corridors.

The baseline model was developed based on GIS emissions on major transportation corridors and carbon dioxide emissions for all corridors were forecast for years 2020, 2030 and 2050.

This modeling will be useful to analyze the different strategies to be implemented in order to reduce GHG emissions from freight transport, and to assess the impact from the various global practices to mitigate climate change.

Construcción de la linea base de emisiones de CO ₂ del transporte de carga en México	

Resumen ejecutivo

El transporte de carga en México ha tenido un significativo crecimiento desde la entrada en vigor del Tratado de Libre Comercio de América del Norte, el cual ha traído consigo consecuencias ambientales directas e indirectas en los principales corredores de transporte en el país. La mayor parte de la carga en los corredores se transporta por camión, los cuales actualmente son la fuente generadora del mayor número de emisiones contaminantes y otros impactos ambientales, como el ruido, los accidentes, la generación de residuos sólidos, etcétera.

Las emisiones generadas por el transporte, tales como el dióxido de carbono (CO_2) y los óxidos nitrosos (NO_x) , son los principales precursores en la generación del fenómeno de "efecto invernadero", el cual, a su vez produce el calentamiento global y contribuye al cambio climático.

Las emisiones de GEI provenientes del sector transporte representan una cantidad importante de estas emisiones en los diferentes países y guardan una estrecha relación con el grado de desarrollo de su economía. En México, el sector transporte es una de las fuentes con mayor contribución de GEI, el cual representa el 20% del total nacional, con 144.6 millones de toneladas de equivalentes de dióxido de carbono (CO₂-eq) emitidas en 2006 (Cuarta Comunicación Nacional de México ante la Convención Marco de las Naciones Unidas sobre el Cambio Climático, [CMNUCC]).

Por lo anterior, resulta prioritario realizar estimaciones de las emisiones contaminantes que genera el transporte carretero, particularmente el transporte de carga.

En el presente trabajo se realiza un inventario de emisiones mediante una metodología de abajo hacia arriba y se construye una línea base con la ayuda de indicadores ambientales. La metodología utilizada emplea el submodelo de Emisiones Ambientales (SEA), del *Highway Development and Management System* conocido como HDM-4, por sus siglas en inglés.

Dependiendo del propósito del inventario, se determinan los contaminantes criterio o de efecto invernadero. Esta investigación realiza la estimación de emisiones de monóxido de carbono (CO), óxidos de nitrógeno (NOx), óxidos de azufre (SOx), partículas suspendidas (PM), compuestos orgánicos volátiles (COV), hidrocarburos (HC) y dióxido de carbono (CO₂).

La ventaja de utilizar el modelo HDM-4 estriba en que este desarrollo informático está concebido para carreteras y precisamente el objeto de este estudio consiste

en estimar las emisiones del transporte carretero en los principales corredores de transporte de carga en el país.

La metodología planteada para la estimación de emisiones en carreteras consta de tres etapas. La primera se refiere a los datos de entrada, tales como: datos sobre el tránsito de los corredores de transporte, información de la geometría del camino, caracterización de la flota vehicular que circula en él, información ambiental de la zona donde se ubica cada tramo del camino y el estado superficial del mismo. La segunda etapa corresponde a la alimentación del modelo HDM-4 para realizar los análisis necesarios con el modelo. Finalmente, la tercera etapa comprende los resultados de las estimaciones sobre emisiones, derivadas del análisis del modelo.

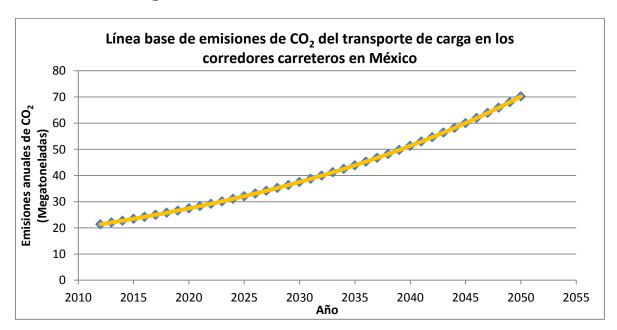
El diseño de la línea base se divide en tres partes: la primera consiste en planear el establecimiento de la línea base a efecto de identificar el objetivo y alcance dela misma, así como el escenario en el cual se basa la información con la que se inicia el estudio, junto con los datos que permiten realizar el pronóstico correspondiente; la segunda parte comprende la selección de la información, y es aquí cuando se describe la metodología a utilizar para realizar la estimación de emisiones; la tercera y última parte estriba en establecer los indicadores que se utilizarán para la construcción de la línea base.

Los indicadores ambientales propuestos para los corredores de transporte son de presión, a saber:

- Emisiones de CO₂ por kilómetro (diarias)
- Factor de emisión promedio del parque vehicular para el transporte de carga
- Toneladas de CO₂ por millón de toneladas-kilómetro

El primer indicador refleja la cantidad de emisiones diarias (en toneladas) emitidas a la atmósfera por kilómetro por el transporte de carga en los corredores analizados. El segundo refleja el factor de emisiones en gr/km en promedio de cada unidad de transporte de carga que circula en el país. El tercero representa las emisiones de CO₂ por cada tonelada por kilómetro transportada en los corredores de transporte analizados.

En el inventario de emisiones realizado se estimó la cantidad anual de gases emitidos a la atmósfera por la operación de vehículos mediante su transporte en los corredores estudiados.


Con base en datos sobre las emisiones de CO₂ por kilómetro se definió la línea base para el transporte de carga en el año 2012, y se pronosticaron las emisiones futuras de acuerdo con la estadística básica para este sector; de esta manera se obtuvieron las emisiones para los años 2020, 2030 y 2050.

El resultado de las proyecciones, tanto para el año base 2012 como para los años 2020, 2030 y 2050, con una tasa de crecimiento del 3.18%, se muestra a continuación.

Pronóstico de emisiones de CO₂ para el transporte de carga en los corredores de transporte

	Año base		Pronóstico	
	2012	2020	2030	2050
Emisiones de CO ₂ (megatoneladas anuales)	21.6	27.4	37.5	70.2

La figura siguiente muestra la línea base de las emisiones y su pronóstico de crecimiento. Con dicha línea se pueden entonces realizar las mitigaciones correspondientes para identificar aquellas que pudieran tener un mayor impacto en la reducción de CO₂.

A partir de esta información puede observarse la tendencia de las emisiones de CO₂ producidas por el subsector transporte de carga por carretera, modeladas a través de una línea base, sobre las cuales se pueden aplicar diferentes estrategias para reducir el impacto de GEI emitidos al medio ambiente. Entre las estrategias susceptibles a evaluar en México figuran: la renovación del parque vehicular del autotransporte de carga; la eco-conducción, llamada también conducción técnica; la adopción de una normativa en materia de eficiencia vehicular; el uso de sistemas inteligentes de transporte en autopistas; el transporte intermodal; transferencias de la carga al ferrocarril; construcción de libramientos carreteros, y mejora de la superficie de rodamiento en las carreteras.

Se realizó también un primer modelado de la línea base sobre algunos corredores de transporte para que a través de SIG se visualizara el impacto que los GEI tienen en el medio ambiente en los corredores carreteros.

Las siguientes fases de esta investigación propondrán pautas para que los responsables de la toma de decisiones en el sector transporte escojan sobre estrategias metodológicamente bien documentadas la dirección de las inversiones en la mitigación de emisiones de GEI como acciones contra el cambio climático. Es aquí donde inicia el objetivo de analizar cada acción de mitigación y evaluar su potencial de mitigación, para posteriormente realizar un análisis multicriterio con miras a encontrar la estrategia óptima orientada a reducir los GEI.

El compromiso de investigación en temas de cambio climático está inmerso actualmente en el Programa Especial de Cambio Climático, el cual ayudará a fortalecer la investigación aplicada encaminada al logro de resultados en la reducción de GEI.

Introducción

El transporte de carga en México ha tenido un significativo crecimiento desde la entrada en vigor del Tratado de Libre Comercio de América del Norte, el cual ha traído consigo consecuencias ambientales directas e indirectas en los principales corredores de transporte en el país.

El autotransporte y el ferrocarril son usualmente impulsados por motores a diésel para el traslado de mercancías, y son estos motores los responsables de los mayores impactos al medio ambiente, al generar emisiones tales como el óxido de nitrógeno (NOx), partículas suspendidas (PM, por sus siglas en inglés), monóxido de carbono (CO), hidrocarburos (HC) y dióxido de azufre (SO₂).

Las emisiones generadas por el transporte, como el dióxido de carbono (CO₂) y los óxidos nitrosos, son los principales precursores de generar el fenómeno de "efecto invernadero", el cual, a su vez, contribuye al calentamiento global.

En el contexto internacional, particularmente en Europa, el 85% de la carga se trasporta por carretera, 7% por ferrocarril y 6% es por vía fluvial-marítima, mientras que en Estados Unidos, el 40% se transporta por ferrocarril, 35% por modo carretero y 20% vía fluvial-marítima.

En México la mayor parte de la carga en los corredores se transporta por camión, los cuales constituyen la fuente generadora del mayor número de emisiones contaminantes, con una tendencia de crecimiento de más del 2% anual. Se estima que un tercio de la carga en el país corresponde al transporte internacional y el resto es carga doméstica.

De acuerdo con el informe *Un solo destino: la sustentabilidad. Reducción de las emisiones de gases de efecto invernadero generadas por el transporte de carga en América del Norte*, de la Comisión para la Cooperación Ambiental (CCA) de América del Norte, la forma más verde de avanzar es a través del uso de modos de transporte menos contaminante, por lo que resulta prioritario realizar una estimación de las emisiones contaminantes que genera el transporte carretero, particularmente el transporte de carga.

En la presente investigación se realiza una revisión del estado del arte nacional en temas de cambio climático, tanto de los diagnósticos que se han realizado para el transporte en general, como lo especifico para el subsector carretero. Esto incluye la revisión de los diferentes instrumentos, entre los que se incluyen la Ley General

de Cambio Climático, la Estrategia Nacional de Cambio Climático y el Programa Especial de Cambio Climático.

En este último documento se analizan los diferentes objetivos que la Secretaría de Comunicaciones y Transportes tiene a cargo como parte de sus compromisos de reducir los gases de efecto invernadero (GEI).

Como parte del capítulo 1 se hace una descripción teórica de las implicaciones que tiene el desarrollo de una línea base, se plantean qué indicadores se pueden utilizar para su construcción, particularmente en el tema de GEI. Incluye también una revisión de las diferentes metodologías para la estimación de emisiones de GEI.

El capítulo 2 muestra la metodología utilizada para el diseño de la línea base. Esta metodología se fundamenta en tres etapas: la primera consiste en la planeación de línea base para identificar el objetivo y alcance de ésta, así como el escenario a partir del cual se genera la información necesaria para comenzar, y aquellos escenarios que permiten realizar el pronóstico correspondiente; la segunda parte corresponde a la selección de la información y es en este apartado donde se describe la metodología a utilizar para realizar la estimación de emisiones, y la última comprende el establecimiento de los indicadores que se utilizarán para la construcción de la línea base.

Los indicadores ambientales propuestos para los corredores de transporte son de presión, a saber:

- Emisiones de CO₂ por kilómetro (diarias)
- Factor de emisión promedio del parque vehicular para el transporte de carga
- Toneladas de CO₂ por millón de toneladas-kilometro

El primer indicador refleja la cantidad de emisiones diarias (en toneladas) emitidas a la atmósfera por kilómetro por el transporte de carga en los corredores analizados. El segundo refleja el factor de emisiones en gr/km en promedio de cada unidad del transporte de carga que circula en el país. El tercero representa las emisiones de CO₂ por cada tonelada por kilómetro transportada en los corredores de transporte analizados.

En el capítulo 3 se realiza el desarrollo de la línea base de las emisiones de CO₂ correspondiente al transporte de carga, conforme a los indicadores comentados. De esta manera, se integra el inventario de emisiones en 16 corredores de transporte de carga por carretera, subdividiendo la estimación por rutas, carreteras y tramos. Los contaminantes estimados son seis: hidrocarburos, monóxido de carbono, óxidos de nitrógeno, dióxido de azufre, partículas suspendidas (PM) y dióxido de carbono.

Los resultados se presentan por corredor y, por los ramales que lo conforman. En primer lugar, se presentan las emisiones del total de los vehículos y posteriormente se extraen las correspondientes solo a los vehículos destinados al transporte de carga. Por último, en este capítulo se formulan los indicadores de las emisiones de CO₂ generadas por el transporte de carga en los corredores carreteros en México.

En el capítulo 4 se realiza el modelado de la línea base a partir del inventario de emisiones del transporte de carga para el año 2012. El pronóstico para el año 2020, 2030 y 2050 se realizó en la estimación de las tasas de crecimiento del parque vehicular registrado para el transporte de carga en México y la demanda de transporte estimada.

Finalmente el capítulo 4 incluye la modelación de línea base a través de sistemas de Información geográfica (SIG), únicamente para los corredores más importantes, a fin de permitir una identificación visual de las carreteras donde existe una mayor concentración de emisiones de CO₂ emitidas por kilómetro recorrido del transporte de carga.

En las conclusiones se realiza una breve descripción de los resultados y los alcances futuros del presente trabajo de investigación.

1 Antecedentes

El desafío en los últimos años para los países en temas ambientales es la acción global contra el cambio climático. Es por ello que tanto en programas como estrategias de alcance nacional, los gobiernos han establecido metas orientadas a reducir las emisiones de Gases de Efecto Invernadero (GEI) y, por otro lado, han adoptado medidas de adaptación para reducir la vulnerabilidad de los sistemas críticos, como el del transporte.

Los efectos del cambio climático en México han ido incrementando con los años su impacto negativo, por lo que la preocupación ha obligado a tomar importantes decisiones nacionales que buscan mitigar los GEI y adaptar al país contra los nuevos paradigmas ambientales.

En México, desde el año 2008 se han desarrollado diversos documentos mediante los cuales se establece un diagnóstico nacional de generación de emisiones de GEI, así como un atlas de vulnerabilidad de riesgos ante el cambio climático. Sin embargo, los instrumentos no han resultado del todo efectivos para encarar la problemática del cambio climático, por lo que se optó por generar la Ley General de Cambio Climático (LGCC) la cual fue aprobada en junio de 2012.

La LGCC establece que la política nacional de mitigación de Cambio Climático deberá incluir, a través de los instrumentos de planeación, política y los instrumentos económicos previstos, un diagnóstico, planificación, medición, monitoreo, reporte, verificación y evaluación de las emisiones nacionales. Asimismo, esta ley prevé la creación de planes, programas, acciones, junto con instrumentos económicos, de política y regulatorios para el logro gradual de metas de reducción de emisiones específicas —por sectores y actividades— tomando como referencia los escenarios de línea base y líneas de base por sector establecidos en los instrumentos previstos en el marco legal, y considerando los tratados internacionales suscritos por el Estado Mexicano en materia de cambio climático.

De esta manera, la LGCC contempla que para el sector transporte se deba contar con una línea base que permita monitorear el cumplimiento de acuerdos que se han establecido en el país para reducir las emisiones de Gases de Efecto Invernadero (GEI). La conceptualización de la línea base se realiza comúnmente a través de indicadores.

La Estrategia Nacional de Cambio Climático (ENCC) constituye el instrumento rector de la política nacional en el mediano y largo plazos para enfrentar los efectos del cambio climático y transitar hacia una economía competitiva, sustentable y de bajas emisiones de carbono.

Los objetivos de mitigación que se han establecido en la LGCC y la ENCC son reducir un 30% las emisiones de GEI con respecto a la línea base para el año 2020 y 50% para el año 2050 en relación a las emisiones determinadas en el año 2000.

La ENCC, en cuanto a emisiones empieza a subrayar la importancia de reducir los llamados Contaminantes Climáticos de Vida Corta, ya que estos por su composición química permanecen poco tiempo en la atmósfera y, por lo tanto, las medidas adoptadas para reducirlos proporcionarán beneficios a corto plazo. Los CCVC están conformados por el carbono negro, el ozono troposférico, el metano y los hidrofluorocarbonos, los dos primeros son emitidos por el sector transporte.

De acuerdo con cifras de la ENCC, para el año 2010, en México se emitieron a la atmósfera gases de efecto invernadero (GEI) equivalentes a 748 millones de toneladas de CO₂ (MtCO₂e); esto representa un aumento del 33% con respecto a las emisiones de 1990 (véase la figura 1). En el periodo de 2001 a 2010, las emisiones de GEI presentaron una tasa media de crecimiento anual (TMCA) de 2.6%, mientras que el PIB presentó una TMCA de 1.9 por ciento.

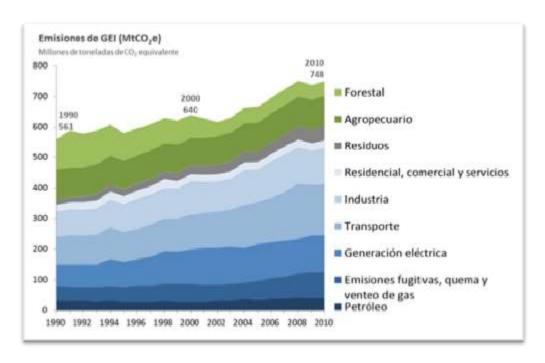


Figura 1. Evolución de las emisiones de GEI en México

Fuente: ENCC, 2013. (INE, 2010)

De acuerdo con las tendencias y las diversas estrategias de mitigación, se determinó una línea base nacional de GEI, la cual se construyó a partir de los inventarios nacionales del Inventario Nacional de Emisiones de. Gases de Efecto Invernadero (INEGEI). Tomando este escenario como base, las emisiones de GEI en México alcanzarían 960 MtCO₂e en 2020, 1,276 MtCO₂e en 2030, y 2,257 MtCO₂e en 2050.

Sin embargo, con base a los estudios que se han realizado también se han podido determinar los potenciales de mitigación, de tal manera que se estimaron también las curvas de abatimiento de GEI, que se pueden observar en la figura 2.

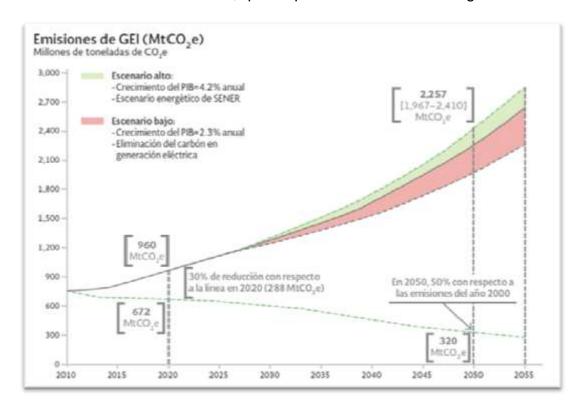


Figura 2. Línea base y de abatimiento de las emisiones de GEI en México

Fuente: ENCC, 2013. (INECC, 2013)

Por otra parte, en el Programa Especial de Cambio Climático (PECC) —aprobado en 2014— se establecen objetivos, estrategias, acciones y metas para enfrentar el cambio climático mediante la definición de prioridades en materia de adaptación, mitigación, investigación, así como de asignación de responsabilidades, tiempos de ejecución, coordinación de acciones y de resultados, y estimación de costos.

Las estimaciones para el sector transporte reflejan un crecimiento importante en el periodo comprendido entre 2012 y 2020, además de mostrar a este sector como el de mayor aportación a la generación de emisiones por su alto consumo energético. En la tabla 1.1 pueden observarse las cifras tanto para GEI como para carbono negro, procedente de CCVC, considerando el Potencial de Calentamiento Global (PCG) a 20 y 100 años.

Tabla 1.1 Emisiones de GEI y CN

Sector	PCG 100 GEI (MtCO₂e)	PCG20 GEI (MtCO₂e)	PCG 100 CN (MtCO ₂ e)	PCG20 CN (MtCO₂e)
Emisione	s de compuestos y	gases de efecto in	nvernadero en 201	2
Transporte	205.2	206.9	3.2	11.5
Emisiones de compuestos y gases de efecto invernadero, proyección a 2020				
Transporte	272.2	273.3	3.9	13.8

Fuente: Elaboración de la Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT) con datos del Instituto Nacional de Ecología y Cambio Climático (INECC), 2013

Las emisiones del sector transporte corresponden en 94% provienen del autotransporte, 3.3% del transporte aéreo, 1.4% del marítimo y 1% al ferroviario.

En el objetivo 3 del PECC se plantea reducir emisiones de gases de efecto invernadero para transitar a una economía competitiva y a un desarrollo bajo en emisiones. Este objetivo pretende la implementación de acciones efectivas para la mitigación de GEI.

A efecto de alcanzar este objetivo, se busca la instrumentación de acciones que permitan reforzar la necesidad de contar con una línea base para la reducción de emisiones de GEI. A continuación se describen algunas de estas acciones.

La estrategia 3.2 está orientada a "Acelerar la transición energética a fuentes de energía menos intensivas en carbono", mediante las siguientes líneas de acción:

3.2.2	Desplazar el uso de diésel y combustóleo en la matriz energética, por fuentes menos intensivas en carbono.
3.2.5	Desarrollar programas de aprovechamiento de biocombustibles, y en su caso de mezclas, para generación de energía eléctrica y térmica, y para el sector transporte.

Por su parte, la estrategia 3.5 busca "Desarrollar esquemas de transporte y movilidad sustentable", y las acciones para el transporte son específicamente:

3.5.3	Promover el uso eficiente del ferrocarril en el traslado de carga, para disminuir costos de transporte y emisión de contaminantes.
3.5.4	Promover la modernización del transporte de carga, para reducir costos de operación y emisiones e incrementar su competitividad y seguridad.
3.5.5	Reducir GEI y contaminantes criterio derivado de la operación del Programa Transporte Limpio.
3.5.6	Construir ferrocarriles interurbanos de pasajeros con una visión integral que considere el desarrollo regional y las proyecciones demográficas.
3.5.8	Fomentar el cabotaje y el transporte marítimo de corta distancia, para impulsarlo como vía alterna para el tránsito de mercancías.
3.5.9	Avanzar hacia prácticas de logística de ahorro de combustibles.

La estrategia transversal 3.5 tendrá como fin "Promover inversiones en infraestructura física y de logística para reducir los costos de operación de las empresas", y las acciones específicas para la Secretaría de Comunicaciones y Transportes son:

3.5.2	Fomentar la multimodalidad para el traslado eficiente de mercancías conforme a las distancias y características de la carga.
3.5.5	Promover el uso de Sistemas Inteligentes de Transporte para mejorar la seguridad y agilizar el movimiento de carga y pasajeros.

El objetivo 4 del PECC busca reducir las emisiones de contaminantes climáticos de vida corta, propiciando co-beneficios colaterales de salud y bienestar.

Como parte de este objetivo, la estrategia 4.1 impulsa el "Utilizar tecnologías y combustibles que reduzcan la emisión de carbono negro, mejorando la calidad del aire y la salud pública", y las acciones para el transporte son:

	Satisfacer el consumo nacional de combustible Ultra Bajo en Azufre (UBA).
4.1.5	Promover proyectos retrofit en unidades a diésel.

La estrategia 4.4 busca "Desarrollar instrumentos normativos y de fomento para regular la emisión de contaminantes climáticos de vida corta", y las líneas de acción son:

4.4.6	Actualizar la norma de eficiencia energética y compuestos de efecto invernadero para vehículos ligeros nuevos y expedir la de vehículos pesados.
4.4.7	Expedir normas de eficiencia energética y compuestos de efecto invernadero de maquinaria pesada, transporte marítimo, ferroviario y aéreo.

La estrategia 4.5, por su parte, pretende "Promover el desarrollo de Acciones Nacionales Apropiadas de Mitigación (NAMA) que reducen contaminantes climáticos de vida corta", sujeta a financiamiento, y la acción para el transporte es la siguiente:

4.5.4	Impulsar la realización de un proyecto de NAMA de autotransporte federal
	de carga para el hombre camión y pequeño transportista.

El objetivo 5 del PECC se centra en la consolidación de la política nacional de cambio climático mediante instrumentos eficaces y en coordinación con entidades federativas, municipios, el Poder Legislativo y la sociedad, en general.

El PECC para este objetivo pretende lograr la instrumentación de la política nacional de cambio climático a través del desarrollo y aplicación de diversos instrumentos de carácter económico, de política, información, investigación, capacitación y participación. El conjunto de estos instrumentos permitirá implementarla de manera eficiente, informada y consistente, así como la creación de sinergias entre actores, mediante el fomento de iniciativas de colaboración.

De este objetivo, la estrategia 5.2 busca "Desarrollar e implementar instrumentos para consolidar la política nacional de cambio climático", y la línea de acción es:

5.2.3 Promover la realización de un inventario de gases de efecto invernadero para reducir las emisiones en actividades asociadas al sector.

A manera de conclusión del presente apartado, cabe destacar que para poder estimar las reducciones de gases de efecto invernadero es necesario contar con una línea base, a partir de la cual se puedan establecer estrategias de mitigación y con ellas determinar los GEI mitigados e incluso poder incluir en cada uno de los gases su potencial de mitigación respectivamente.

1.1 Línea de base

La línea base surgió como un método que permite evaluar los proyectos partiendo de una situación inicial; de esta manera, se convirtió en una herramienta muy útil para numerosas organizaciones, con la cual se puede medir el estado que guardan los proyectos durante toda su duración.

En el ciclo de los proyectos de investigación es común establecer una línea de base mediante la cual se puedan comparar resultados de acciones orientadas a modificar el punto de referencia.

La línea de base tiene un carácter cuantitativo y se origina mediante el uso de fuentes primarias principalmente (desarrolladas exprofeso), o algunas secundarias (estadísticas o estudios previos), para de esta manera desarrollar un escenario específico para la investigación.

Asimismo, la línea de base puede contener indicadores estratégicos que permiten efectuar un seguimiento correcto y con ello realizar un análisis de los resultados. Estos indicadores proporcionan información oportuna y confiable para la toma de decisiones sobre un proceso o actividad en específico.

La información que se requiere para construir los indicadores proviene de bases de datos perfectamente organizadas y que se pueden continuar alimentando sistemáticamente con el tiempo, de tal manera que se pueda monitorear la evolución de los indicadores y el estado que guarda el proyecto con respecto de la línea base.

La línea base en los proyectos tiene tres funciones principalmente, que se ilustran en la figura 3.

Figura 3. Diagrama para la realización de una línea base

Fuente: Elaboración propia.

Aunque en el diagrama anterior también podría incluirse la identificación de bases de datos para la realización del diagnóstico de la situación inicial, tales como fuentes primarias de información, entre las que podrían figurar encuestas, muestreos y grupos focales, etc. De igual manera se puede incluir la caracterización del usuario potencial de la información. Aunque para fines de la presente publicación no se consideró necesario ilustrar estas tareas en el diagrama.

1.2 Indicadores

Según información publicada por la Comisión Económica para América Latina y el Caribe (CEPAL), un sistema de indicadores se diseña con el objetivo fundamental de apoyar el proceso de planificación, formulación, seguimiento y evaluación de planes, programas y proyectos a mediano y largo plazos.

De acuerdo con la Organización para la Cooperación y el Desarrollo Económico (OCDE), un indicador es "un parámetro, o el valor resultante de un conjunto de parámetros, que ofrece información sobre un fenómeno, y que posee un significado más amplio que el estrictamente asociado a la configuración del parámetro".

Los indicadores son útiles en el proceso de toma de decisiones, al permitir a los tomadores de decisiones contar con información oportuna y confiable.

Existen varios modelos para organizar los conjuntos de indicadores. Uno de los más conocidos —y quizá el más utilizado en nuestro país— es el denominado Presión-Estado-Respuesta (PER), propuesto por el Ministerio de Medio Ambiente de Canadá (*Environment Canada*) y la OCDE (OCDE, 1993).

El esquema PER se basa en la siguiente lógica: las actividades humanas ejercen presiones sobre el medio ambiente (indicador de presión), con lo cual cambian la calidad y cantidad de los recursos naturales (indicador de estado), motivo por el cual la sociedad responde a estos cambios mediante cambios en las políticas ambientales o sectoriales (indicador de respuesta). El siguiente esquema muestra claramente el enfoque PER.

Figura 4. Esquema Presión-Estado-Respuesta (PER)

Fuente: SEMARNAT.

A efecto de generar la línea base, son de especial interés los indicadores denominados de presión, producto de las diferentes actividades humanas, en este caso, la transportación de personas y mercancías por medio de vehículos motores.

Entre los indicadores de presión se cuentan los llamados directos o indirectos: los primeros consideran aquellos impactos que actúan de forma directa sobre el ambiente (como los residuos sólidos o las emisiones contaminantes), y los segundos toman en cuenta las actividades humanas en sí mismas, es decir las actividades productivas responsables de la problemática (como las características del parque vehicular).

Los indicadores se organizan por problemas según el área de que se trate; las más comunes son: atmósfera, residuos y recursos naturales, entre otros. Para el

presente trabajo los indicadores que interesan son aquellos asociados al cambio climático.

La tabla 1.2 muestra los indicadores climáticos utilizados en España, y que sirven de referencia para el diseño de los que se utilizan en el presente trabajo.

Tabla 1.2 Indicadores climáticos

Tema ambiental	Indicador de presión	Indicador de estado	Indicador de respuesta
Destrucción de la	Producción/consumo de	Espesor de la capa	Recuperación de CFCs
capa de ozono	CFCs y halones	de O ₃	y halones
Calentamiento	 Emisiones de CO₂ 	 Concentración de 	 Intensidad energética
global	 Emisiones de CH₄ 	GEI	% de participación de
	 Índice de potencial de 	 Cambio de la 	energías renovables en
	calentamiento global	temperatura media	energía primaria
Contaminación	 Emisiones de SO₂ 	 Inmisiones de SO₂ 	
atmosférica	 Emisiones de NO₂ 	respecto a valores	
	 Emisiones por habitante 	legislados	Gastos per cápita en
		 Inmisiones de NO₂ 	medio ambiente
		respecto a valores	Gastos para protección
		legislados	de la salud humana
		Inmisiones de	as is said namana
		partículas respecto a	
		valores legislados	

Fuente: Elaboración propia con información de la Junta de Andalucía de España.

En el ámbito mundial, el Panel Intergubernamental de Cambio Climático (IPCC, por sus siglas en inglés) se encarga de dar seguimiento a indicadores de cambio climático, tales como las emisiones de CO₂. Para ello se cuenta con las "Directrices del IPCC para los inventarios nacionales de gases de efecto invernadero", cuya última versión fue revisada en 1996.

El IPCC establece dentro de sus indicadores las emisiones de dióxido de carbono que se genera por la quema de combustibles que contienen carbono, y las emisiones nacionales se determinan en función de la cantidad de combustible utilizado.

El método del IPCC es muy práctico de utilizar por los diferentes países, ya que solo se requieren las estadísticas sobre la energía suministrada a la economía y está es convertida a emisiones de CO2. Este procedimiento será explicado en el apartado 1.4.

1.3 Gases de Efecto Invernadero

Los gases de efecto invernadero (GEI) son el promotor principal del cambio climático que se ha observado desde el siglo XX, y son producto del estilo de vida y las actividades humanas. Por lo que resulta importante su monitoreo, para

conocer a través de indicadores cómo es que se acumulan y calientan el clima, y cómo repercuten en la atmosfera terrestre, en los océanos, etcétera.

Estos cambios tienen efectos tanto positivos como negativos sobre las personas y el medio ambiente, incluidos plantas y animales. Debido a que muchos de los principales gases de efecto invernadero permanecen en la atmósfera durante décadas o incluso siglos enteros desde que fueron generados, sus efectos de calentamiento en el clima persisten durante mucho tiempo y, por lo tanto, pueden afectar a las generaciones presentes y futuras. Es por ello que resulta importante monitorear la cantidad de emisiones liberada al medio ambiente y la duración que tendrá en el tiempo en la atmósfera; de esta manera, cada gas tendrá un potencial de calentamiento diferente.

Un indicador comúnmente utilizado es la estimación de dióxido de carbono equivalente (CO₂ eq), en el cual cada gas se compara con su potencial de calentamiento y se convierte a solo dióxido de carbono, mismo que tiene un supuesto potencial de calentamiento de 1, por lo que la equivalencia se obtendrá, entonces, al multiplicar las masas con su potencial de calentamiento. La tabla 1.3 muestra una idea más clara sobre el potencial de calentamiento, la duración de los GEI y de los denominados contaminantes climáticos de vida corta (CCVC).

Los seis principales gases de efecto invernadero, adoptados por consenso en el Protocolo de Kioto, son dióxido de carbono (CO_2), metano (CH_4); óxido nitroso (N_2O), hidrofluorocarbonos (HFC's), perfluorocarbonos (PFC's) y hexafluoruro de azufre (SF_6).

Tabla 1.3 GEI, características, vida y potencial de calentamiento

GEI	Origen del GEI	Tiempo de vida	Potencial de calentamiento
Dióxido de carbono	Se emite principalmente a partir de la quema de combustibles fósiles (petróleo, gas natural y carbón), residuos sólidos, árboles y productos de madera. Los cambios en el uso del suelo también influyen. La deforestación y la degradación de los suelos agregan dióxido de carbono a la atmósfera, mientras que el nuevo crecimiento del bosque lo extrae de la atmósfera.	Si no es absorbido, puede durar cientos de años.	1
Metano	Se emite durante la producción y el transporte de carbón, gas natural y petróleo. Las emisiones de metano también resultan de la ganadería, así como de prácticas agrícolas y de la descomposición anaeróbica de residuos orgánicos en los vertederos de desechos sólidos urbanos.	12	28
Óxidos nitrosos	Se emiten durante las actividades agrícolas e industriales, así como durante la combustión de combustibles fósiles y residuos sólidos.	121	265

Fuente: Elaboración propia con información de la Agencia de Protección Ambiental (*Environmental Protection Agency*, EPA) de Estados Unidos

Tabla 1.4 CCVC, características, vida y potencial de calentamiento

ccvc	Origen del CCVC	Tiempo de vida	Potencial de calentamiento
Carbono negro	Se produce como resultado de la combustión incompleta de los combustibles fósiles y de la biomasa en motores diésel; por la quema residencial de combustibles sólidos, como carbón, madera y estiércol, y en algunas instalaciones industriales, como los hornos ladrilleros tradicionales.	Días	0.64
Ozono troposférico	El ozono (O ₃) se conoce como un gas secundario porque no se emite directamente, sino que se forma por la oxidación, producida por la luz solar, de "gases precursores", como el metano (CH ₄), el monóxido de carbono (CO), los compuestos orgánicos volátiles que no provienen del metano (COVNM) y los óxidos de nitrógeno (NO _x). En la parte inferior de la atmósfera (troposfera), el O ₃ es un potente gas de efecto invernadero dañino y un contaminante del aire que afecta la salud humana y el rendimiento de los cultivos.	Semanas	0.40

Fuente: Elaboración propia con información del Programa de las Naciones Unidas para el Medio Ambiente (PNUMA).

Otro aspecto a identificar en un indicador es la fuente de generación de las emisiones (por ejemplo, el sector transporte, que en México y Estados Unidos es la segunda fuente de generación de GEI).

De esta manera la línea base a diseñarse buscará medir la cantidad de dióxido de carbono (CO₂) que genera el transporte carretero.

1.4 Metodologías para la estimación de emisiones

La estimación de emisiones debe realizarse de manera específica, debido principalmente a que la cantidad y la diversidad de las fuentes de emisión es muy variada, por lo que en cada caso deben usarse técnicas distintas para calcular la cantidad de emisiones que un sector de la economía genera.

Existen básicamente dos estrategias: las denominadas *Top-Down*, es decir metodologías de arriba hacia abajo, y las *Bottom-Up*, que son metodologías de abajo hacia arriba.

La dirección indica el sentido en que se realiza la estimación de emisiones, que puede ser una forma puntual hasta llegar a lo general, o viceversa. La selección de cada herramienta depende en gran medida de la disponibilidad de información, pero también del objetivo que persigue el inventario de emisiones que se desea producir.

1.4.1 Metodologías Bottom-Up

Con base en el concepto *bottom-up* es posible estimar las emisiones totales para un área o región, mediante la suma de las emisiones de todas las actividades individuales. Esta metodología requiere el uso de información detallada de cada una de las fuentes de emisión individuales para integrar el inventario, por ejemplo, el factor de emisión vehicular de cada unidad automotora.

Para conocer las emisiones con detalle de cada una de las fuentes, es necesario un número importante de información y efectuar una gran cantidad de cálculos para realizar las estimaciones.

Para un inventario de emisiones vehiculares basado en la metodología *bottom-up*, se requiere información relativa a los siguientes elementos: un factor de emisión de acuerdo con el número de vehículos, edad de los vehículos y el tipo de vehículo; las distancias recorridas por cada tipo de vehículo; datos para caracterizar ambientalmente la zona de estudio, tales como altitud y temperatura, entre otros, y el estado de la red vial, que comprende elementos como la superficie del pavimento, las velocidades de operación, etcétera. El esquema de la figura 5 representa la metodología *bottom-up*.

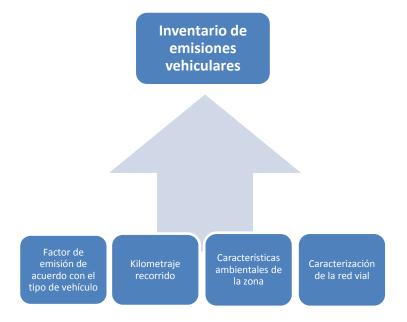


Figura 5. Esquema bottom-up

Fuente: Elaboración propia

Este tipo de análisis será el utilizado en la presente investigación, y el detalle de la metodología *bottom-up* utilizada se describirá en el capítulo 2.

1.4.2 Metodologías Top-Down

El método *Top-Down* permite estimar las emisiones totales de un área, región o país, mediante la obtención de información estadística para cada una de las actividades; su desarrollo requiere menos información. La figura 6 representa la metodología *Top-Down*.

El IPCC utiliza este tipo de metodologías, donde cada país reporta el consumo de energía para cada uno de los sectores y subsectores, y de acuerdo con los factores de emisión de carbono para cada uno de ellos, se calcula el total de emisiones.

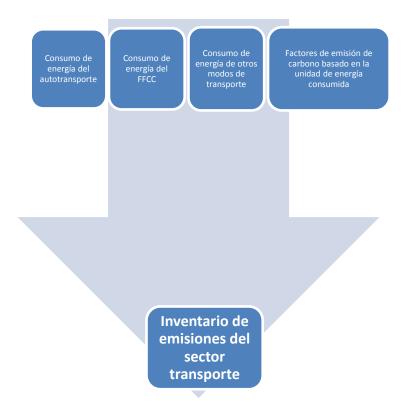


Figura 6. Esquema Top-Down

Fuente: Elaboración propia

2 Metodología para el diseño de la línea base de emisiones de CO₂ del transporte de carga

El presente proyecto busca desarrollar una línea base para las emisiones provenientes de la operación del transporte carretero, particularmente aquel destinado al transporte de mercancías, comúnmente llamado en México "transporte de carga".

La línea base buscará conocer, desde un estado inicial, cómo sería el comportamiento de diferentes medidas de mitigación de GEI que se puedan aplicar en el país, basado en la práctica internacional.

Los ejercicios comparativos permitirán entonces conocer la efectividad de las medidas y así poder elegir cuáles podrían tener un potencial mayor de mitigación de GEI para el transporte de carga. Este punto conformará la base para investigaciones futuras a partir de esta línea base desarrollada.

La metodología se fundamenta en tres etapas: la primera comprende la planeación de línea base para identificar el alcance de ésta; la segunda, la selección de la información, y por último, el establecimiento de los indicadores que se utilizarán para la construcción de la línea base.

2.1 Planificación

La planificación de la línea base debe contemplar el objetivo que esta persigue y los escenarios que se pretende desarrollar, atendiendo a los requerimientos del proyecto.

De esta manera y de acuerdo con la metodología que se describirá más adelante, la planificación de la línea base girará en torno a la actividad del transporte de personas y mercancías en los corredores para el transporte carretero en México, identificando el inventario de emisiones generadas por esta actividad económica.

La cuantificación de la línea de referencia permitirá identificar el impacto del transporte de carga en particular, y con ello, establecer escenarios en el mediano y largo plazos, de tal manera que a futuro se puedan identificar las mejores estrategias de mitigación y evaluar el impacto que tendrá sobre esta línea base.

La variación en el tiempo estará asociada particularmente con dos aspectos que influyen significativamente en las emisiones; estos son el número de vehículos y su crecimiento, y el estado superficial del camino.

De esta manera, se tendrá un punto de partida que proporcionará conocimiento sobre la naturaleza de las emisiones y la cantidad generada.

2.1.1 Objetivo de la línea base

Contar con información de las emisiones de CO₂ que se generan en los corredores carreteros para el transporte en México, particularmente para el transporte de carga.

Las emisiones se reportan a manera de un inventario de emisiones, donde se identifica el total de las emisiones por tipo de vehículos que circulan en las carreteras, agregados de acuerdo a la clasificación manejada por la Secretaría de Comunicaciones y Transportes.

Basados en la información generada y los datos estadísticos obtenidos, se desarrollarán tres indicadores que serán los que conformen la línea base. El detalle de los indicadores se explica más adelante en el presente capítulo.

2.1.2 Alcance de la línea base

La línea base estará integrada por los 16 corredores carreteros del país, conformados por carreteras federales y estatales, libres o de cuota, según sea el caso, por los cuales transita el mayor número de vehículos destinados al transporte de carga, mismos que se detallan en la tabla 2.1.

Aunque se estimarán emisiones de seis contaminantes —hidrocarburos, monóxido de carbono, óxidos de nitrógeno, dióxido de azufre, partículas suspendidas (PM) y dióxido de carbono—, la línea base solo se desarrollará para las emisiones de CO₂.

La línea base desarrollada buscará únicamente servir de base para identificar el impacto del autotransporte de carga en términos de generación de CO₂, para que, a partir de diagnósticos emanados de futuros trabajos, se puedan evaluar los efectos que diversas medidas de mitigación podrían tener en esta actividad económica.

El pronóstico de crecimiento se obtendrá mediante un crecimiento lineal, sobre el número de unidades destinadas al autotransporte federal de carga, a efecto de establecer los escenarios posibles para el año 2020, 2030 y 2050.

Tabla 2.1 Corredores del transporte carretero en México

Número identificador del corredor	Nombre del corredor
1	México-Nuevo Laredo con ramal a Piedras Negras
2	México-Cd. Juárez
3	México-Nogales con ramal a Tijuana
4	Manzanillo-Tampico con ramal a Lázaro Cárdenas
5	México-Veracruz
6	Veracruz-Monterrey con ramal a Matamoros
7	Puebla-Oaxaca-Cd. Hidalgo
8	México-Puebla-Progreso
9	Peninsular de Yucatán
10	Corredor del Pacífico
11	Mazatlán-Matamoros
12	Transpeninsular de Baja California
13	Altiplano
14	Acapulco-Tuxpan
14	Acapulco-Veracruz
16	Circuito Transístmico

Dentro de los planes de sectoriales de comunicaciones y transportes, en México se definieron originalmente 14 ejes carreteros que conectan los principales puertos y cruces fronterizos del país; sin embargo, se ampliaron posteriormente a 16. La figura 7 muestra el mapa con la identificación de los 14 ejes carreteros.

Figura 7. Corredores troncales para transporte carretero en México

Fuente: SCT, 2013.

2.1.3 Descripción del escenario de la línea base

La línea base se establecerá con un escenario inicial a partir del inventario de emisiones de los corredores de transporte de carga con los datos viales 2013, que corresponden a aforos realizados en el año 2012; por lo tanto, el escenario inicial será el año de 2012.

La Ley General de Cambio Climático, aprobada en junio de 2012, estableció en el artículo segundo transitorio, que la meta aspiracional para México será de reducir para el año 2020 el 30% de las emisiones de GEI con respecto al año 2000 y reducir el 50% para el año 2050.

De acuerdo con estos hitos definidos, entonces se establecerán los pronósticos para definir los escenarios para los años 2020, 2030 y 2050, y posteriormente, realizar una regresión para establecer el punto de partida para el año 2000.

De esta manera, se podrán delinear los escenarios de la línea base, correspondientes a las emisiones de CO₂ generadas por el transporte de carga.

2.2 Requerimientos de información

La información necesaria para establecer una línea base está asociada tanto a la metodología como al cumplimiento de demandas normativas dentro de los marcos regulatorios comentados en el capítulo de antecedentes, donde se explica que el sector transporte de carga debe contar con datos pertinentes sobre el impacto que éste genera el sector en términos de contaminación ambiental, específicamente en cuanto a emisiones de GEI.

A continuación se describe la metodología utilizada y la información requerida para nutrirla, y se detallan las fuentes de donde se obtuvo.

2.2.1 Metodología para la estimación de emisiones

La metodología utilizada recurre al Submodelo de Efectos Ambientales y Sociales (SEA), del *Highway Development and Management System*, conocido como HDM-4, por sus siglas en inglés.

Dependiendo del propósito del inventario, se determinan los contaminantes que lo integrarán. Los inventarios que buscan conocer la calidad del aire en zonas urbanas o el impacto generado por un sector específico incluyen contaminantes criterio, como el monóxido de carbono (CO), óxidos de nitrógeno (NOx), óxidos de azufre (SOx), partículas (PM), compuestos orgánicos volátiles (COV) e hidrocarburos (HC). En cambio, si se busca conocer las emisiones que contribuyen al cambio climático global desde sus diferentes fuentes, entonces se

crea un inventario de gases de efecto invernadero (GEI), cuyas emisiones más importantes son el dióxido de carbono (CO₂), metano (CH₄) y óxido nitroso, entre otros.

La utilización del HDM-4 es útil debido a que este desarrollo informático está concebido para carreteras, y es precisamente el objeto de este estudio estimar las emisiones del transporte carretero en los principales corredores de transporte de carga en el país.

La metodología planteada para la estimación de emisiones en carreteras se compone de tres etapas, tal como se muestra en la figura 8.

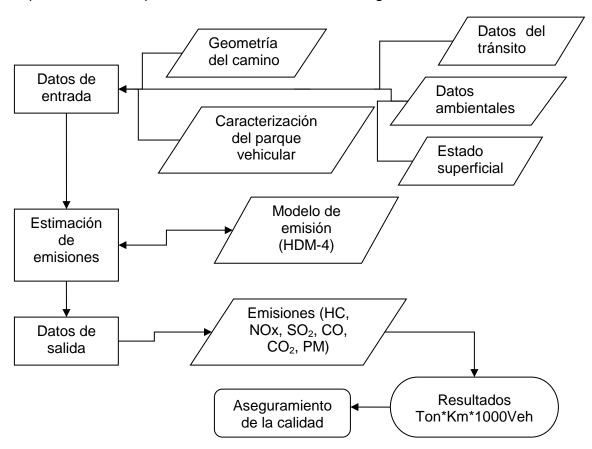


Figura 8. Metodología para el inventario de emisiones en carreteras

Fuente: Elaboración propia.

El trabajo principal se centra en la primera etapa, en la cual es necesario recopilar la información de los datos del tránsito de los corredores de transporte, así como obtener la información de la geometría del camino, caracterizar la flota vehicular que circula en él, y reunir la información ambiental de la zona donde se ubica cada tramo del camino y el estado superficial del mismo.

La etapa 2 consiste en alimentar el modelo HDM-4 para realizar los análisis necesarios.

Por último, en la etapa 3 se obtienen los resultados de las emisiones derivados del análisis del modelo. En el presente trabajo se estiman emisiones de los siguientes contaminantes: hidrocarburos, óxidos de nitrógeno, óxidos de azufre, monóxido de carbono, dióxido de carbono y partículas suspendidas.

Como procesos alternativos, se maneja el aseguramiento de la calidad, de acuerdo con estándares establecidos y, finalmente, se definen los resultados del inventario.

2.2.2 Datos de entrada

Para la aplicación de la metodología, se requiere recopilar mucha información de diversas fuentes, tanto de bancos de información, como de estudios realizados previamente. A continuación se detallan los elementos que integran la información de entrada de la metodología aplicada.

2.2.2.1 Geometría del camino

La geometría de la carretera se relaciona con los cambios angulares del alineamiento vertical y horizontal (curvas [izquierdas y derechas]) del camino, y está estrechamente relacionada con la topografía en donde se ubica la carretera. También la integra la geometría de la sección transversal: ancho de calzada, anchos de acotamientos izquierdo y derecho, número de cuerpos (uno o dos), número y ancho de carriles.

Los datos requeridos sobre la geometría vertical para el modelo son la elevación (en metros) sobre el nivel del mar, para cada tramo, así como a las pendientes verticales correspondientes, en este caso por kilómetro, las cuales se ingresan en porcentaje, en proporción con el ángulo de la pendiente y respecto a la horizontal, del punto inicial al punto final del tramo, (los cuales se estimaron a través de los modelos de elevación de *Google Earth*). Si bien éstos pudieran arrojar datos no muy precisos, sí logran una buena aproximación a las condiciones reales de los tramos y generan información de utilidad para la implementación del SEA y la estimación de emisiones. De esta manera, se generan datos de las elevaciones y pendientes verticales por kilómetro de cada tramo de los corredores de transporte analizados.

Sobre la geometría horizontal la información requerida abarca la deflexión promedio de las tangentes que se observa en el tramo, e igual que el dato anterior, éste se utiliza por kilómetro. Esta información se obtuvo de las bases de datos proporcionadas por la Secretaría de Comunicaciones y Transportes.

2.2.2.2 Datos del tránsito

Los datos del tránsito requeridos son el Tránsito Promedio Diario Anual (TPDA) de cada ruta en los diferentes tramos que lo integran.

La Secretaría de Comunicaciones y Transportes ha instalado y opera un sistema de aforos, lo que permite mantener información actualizada anualmente de las variables macroscópicas del tránsito, tales como volúmenes y velocidades.

Los datos del tránsito permiten conocer también la clasificación vehicular que se puede obtener, de acuerdo con los porcentajes que son extraídos de los aforos carreteros de la SCT, mismos que permiten realizar la clasificación vehicular correspondiente para el modelo. La tabla 2.2 muestra la clasificación vehicular que se utilizará para la estimación de emisiones.

Tabla 2.2 Clasificación del tránsito vehicular en carreteras en México

Tipo de vehículo	Clasificación del vehículo
Vehículo ligero	A
Autobús	В
Camión mediano	C2
Camión pesado	C3
Camión articulado	T3-S2
Camión articulado	T3-S3
Camión articulado	T3-S2-R4

Fuente: Datos Viales 2013, SCT

La publicación de "Datos Viales" de la Dirección General de Servicios Técnicos contiene los datos de los aforos identificados para los corredores de transporte analizados. Esto incluye las carreteras que conforman la red federal de cuota y la red federal libre de peaje. El TPDA toma en cuenta el sentido de la circulación en que crece o decrece el cadenamiento del camino, o el correspondiente de acuerdo con el tramo (para ambos sentidos), por lo que es necesario localizar la estación correcta de aforo en cada ruta. En tramos carreteros con más de un aforo se utilizaron promedios. Los aforos utilizados corresponden al año 2012.

2.2.2.3 Datos ambientales

Para la alimentación del modelo se requiere información climatológica, entre la que destaca la precipitación, la humedad, la temperatura promedio y los rangos de variación de la misma.

Las emisiones de vehículos automotores (gases orgánicos totales [GOT], CO y NOx) dependen en gran medida de la temperatura del aire circundante; por ello es importante ajustar los factores ambientales al caso de estudio.

Para caracterizar las regiones ambientales en el país se utilizó la clasificación climática de *Köppen*. Esta escala consiste en una clasificación climática mundial que identifica cada tipo de clima con una serie de letras que indican el comportamiento de las temperaturas y precipitaciones que caracterizan dicho tipo de clima.

En el recorrido de los ejes de transporte en estudio se identificaron ocho climas de acuerdo con la escala comentada, esto son: Tropical con lluvias todo el año (Af); Tropical con lluvias de monzón (Am); Tropical con invierno seco (Aw); Seco estepario o Semiárido (BS); Seco desértico o Árido (BW); Templado con precipitaciones constantes (Cf); Templado con lluvias en invierno (Cs), y Templado con lluvias en verano (Cw). Para la aplicación en el HDM-4, se generaron los archivos correspondientes con el propósito de ligarlo a cada tramo, según corresponda, conforme a la carta climática para México elaborada por la SEMARNAT.

2.2.2.4 Caracterización del parque vehicular

Las características de los vehículos que operan en cada corredor de transporte son claves para el desarrollo de la modelación en el HDM-4.

Los datos del parque vehicular aportan la información detallada para el cálculo y la estimación de velocidades, costos de operación, tiempo de viaje y otros efectos. Se debe contar con la clasificación, número de pasajeros, número de ruedas y ejes, kilómetros anuales, vida media del vehículo, horas de trabajo y peso en marcha, entre otros datos.

La caracterización se realizó conforme a los estudios de origen-destino que se aplican en las carreteras del país, donde se identifican, además, los pesos y dimensiones de los vehículos encuestados, obteniendo así la edad promedio de los vehículos que transitan por las carreteras. Dado que las estaciones para la aplicación de las encuestas se van localizando en diferentes puntos cada año, no es posible utilizar un único estudio, por lo que para el presente trabajo se decidió utilizar los resultados de la estación de monitoreo ubicada en cada eje de transporte más reciente.

La tabla 2.3 muestra la caracterización vehicular obtenida para cada tipo de unidad motora descrita en la misma tabla.

Tabla 2.3 Edad promedio de las flotas vehiculares

No. Estación	Nombre	Tramo Carretero	Año del aforo	Corredor	Edad Promedio / Tipo de Vehículo
--------------	--------	-----------------	------------------	----------	----------------------------------

					В	C2	C3	T3S2	T3S3	T3S2R4
274	El Cerrito	Querétaro-San Luis Potosí	2011	1	6.5	8.1	13.1	8.1	9.2	6.1
257	Samalayuca III	El Sueco-Ciudad Juárez	2010	2	8.1	7.6	13.1	10	11.9	7.6
249	Las Viguitas	Hermosillo-Nogales	2010	3*	6.3	8.1	14.7	13.1	13.4	8.7
259	El Valiente	Ciudad Obregón-Hermosillo	2010	3*	7	8.4	12.7	10.2	12.2	6.9
229	PC Cuyutlán	Armería-Manzanillo	2009	4	6.9	7.7	9.3	7.3	6.4	4.8
154	Canal SARH	Córdoba-Veracruz (cuota)	2002	5	7.3	10.1	8.6	8.6	4.9	5.6
279	Vega de Alatorre	Poza Rica-Veracruz	2011	6	6.8	9.4	16.4	9.3	9.3	3.6
271	Los Tamarindos	Coatzacoalcos-Salina Cruz	2011	7	10.7	11.1	12.7	12.1	11	6.9
264	Tabasquillo	Villa Hermosa-Cd. Carmen	2010	8	6.4	7.5	9.7	8.3	8.9	6
283	Bacalar	Reforma Agraria-Puerto Juárez	2011	9	9	9	13.2	10.3	14.4	6.5
228	San Felipe	Playa Azul-Manzanillo	2009	10	10	10.3	18.4	11	12.4	14.3
205	La Rosa	Saltillo-Torreón	2006	11	8.3	8.3	12.1	10.1	10.5	8.7
245	Popotla	Tijuana-Ensenada	2010	12	14.5	12.5	13	16.3	15	8.1
237	Cuapiaxtla	Amozoc-Perote	2009	13	8.5	10.5	15.6	8.3	10.8	5.6
292	Palo Blanco	Cuernavaca-Acapulco	2012	14	6.5	8.7	12.9	9.2	9.1	6.2
292	Palo Blanco	Cuernavaca-Acapulco	2011	15	6.5	8.7	12.9	9.2	9.1	6.2
268	Zacatal	Coatzacoalcos-Salina Cruz	2011	16	10.6	10.09	17.7	13.4	15	7.1

Fuente: Estudio estadístico de campo del autotransporte nacional; análisis estadístico de la información recopilada en las estaciones instaladas en 2011, 2010, 2009 y 2002. Documentos técnicos del IMT.

Nota: Para el corredor 3 se utilizó un promedio de ambas estaciones.

2.2.2.5 Estado superficial

El indicador del estado que guardan las carreteras, en términos de la calidad de su capa superficial para el rodamiento de los vehículos, es el Índice de Regularidad Internacional (IRI), que constituye una medida de irregularidad o rugosidad superficial del pavimento.

El IRI es comprendido como las deformaciones verticales de la superficie de un camino con respecto a la superficie plana: aquellas que afectan la dinámica del vehículo, la calidad de viaje, las cargas dinámicas y el drenaje superficial del camino. La rugosidad es, por tanto, una característica del perfil longitudinal de la superficie recorrida y el IRI puede definirse como la suma de las irregularidades

verticales (en valor absoluto) a lo largo de la zona de rodadura de un tramo homogéneo de carretera, entre su longitud; la unidad de medida es m/Km.

La escala del IRI varía desde cero, para una superficie totalmente plana, hasta 20, para caminos sin pavimentar extremadamente deteriorados. Los pavimentos en buen estado suelen asociarse valores de IRI entre 1 y 2, mientras que los niveles máximos de daño en un camino pavimentado están representados por un rango de IRI de 8 a 12.

Por otro lado, la correlación entre el IRI, la velocidad y los costos de operación vehicular representa una de las premisas más importantes en las que se fundamenta la metodología de análisis del HDM-4; parámetros que están directamente relacionados con el consumo de combustible, mediante el cual el modelo predice la cantidad de emisiones generadas por los vehículos.

El estado superficial de las carreteras se puede clasificar en ciertos rangos, donde el rango del IRI definido como "Bueno" equivale a <2.80, "Regular" a 2.81-4.20 y "Malo" >= 4.20. De esta manera se clasifica la red de carreteras del país.

La información del estado superficial se obtiene a través de levantamientos de campo realizados con diferentes equipos en toda la red de carreteras federales del país, tanto la red de carreteras libre de peaje, como la red federal de cuota. Dicha información es recabada por la Dirección General de Desarrollo Carretero, a través de la Dirección General de Conservación de Carreteras y, de Caminos y Puentes Federales, las cuales fueron facilitadas al IMT para la realización de este estudio y otros relacionados con la gestión de infraestructura carretera para su conservación.

Los IRI's utilizados para cada tramo carretero y cada corredor se promedian para obtener tramos homogéneos, de acuerdo con las secciones de carretera que son acotadas principalmente por el TPDA.

2.3 Selección de indicadores

La selección de indicadores se basa en los resultados que se obtendrán del HDM-4, por lo que primeramente se deben analizar los resultados de dicho modelo, es decir, que se obtendrán con la metodología utilizada.

2.3.1 Estimación de emisiones

El modelo HDM-4 para el cálculo de emisiones está diseñado para realizar estimaciones comparativas de las cantidades de emisiones generadas por diferentes opciones de mejora y mantenimiento.

Dependiendo del grado de sofisticación y de agregación de datos, el modelo contenido en el HDM-4 puede predecir la cantidad de emisiones generadas por la operación del transporte y suele considerarse como un modelo a escala meso – macroscópica.

Este modelo forma parte de los modelos mecanísticos, debido a su planteamiento matemático ya que utiliza ecuaciones que se han sido desarrolladas utilizando fundamentos fisicoquímicos que permiten describir la tasa de emisión de un tipo de fuente en particular, y con base en análisis de variables previos. Se considera una herramienta que permite conocer las implicaciones ambientales del deterioro de las condiciones de la red carretera, con requerimientos relativamente bajos de datos de entrada adicionales en comparación con los que se requieren para un análisis de proyecto dentro del mismo programa.

El HDM-4 es un modelo computacional que simula condiciones económicas y físicas a lo largo de un periodo, para una serie de especificaciones y escenarios definidos. El Subsistema de Efectos Ambientales y Sociales (SEA) es parte de uno de los tres submodelos con los cuales el HDM-4 funciona como herramienta de análisis de proyectos, programas de inversión y de estrategias en la gestión de carreteras. Este submodelo consta, a su vez, de tres partes para la estimación de contaminantes ambientales: emisiones de vehículos, balance energético y ruido. Para fines de esta investigación son importantes los resultados de la primera parte.

Los datos de entrada para el subsistema arrojan como salida en el modelo los niveles de emisiones y, en los casos para los que pudiera aplicar, el consumo de energía utilizada.

El análisis realizado en este modelo es con base en una flota de vehículos representativos, los cuales muestran características que pueden ser consideradas como representativas del total de vehículos.

El HDM-4 permite calcular la cantidad de emisiones contaminantes en forma de sustancias químicas y ruido, generadas por la operación del transporte sobre una red carretera o segmento de la misma, así como el balance energético del ciclo de vida de estrategias de conservación. El modelo de emisiones se basa en el propuesto por *Hammarstrom* (1995), y predice las emisiones del escape de los vehículos en función del consumo de combustible y de la velocidad. Las relaciones y los coeficientes del modelo fueron ajustados en términos de gramos por kilómetro, de acuerdo con Bennett (1996).

El consumo de combustible está en función de la velocidad del vehículo que, a su vez, depende de las características del camino y de la propia unidad. De esta manera se puede conocer las emisiones que resultan a partir de los diferentes niveles de mejora que se instrumentarán en el camino.

Los coeficientes y constantes mencionados en las fórmulas provienen de diversos estudios con condiciones controladas que han permitido la elaboración de tablas

con valores recomendados para su uso en el modelo. Estas tablas se proporcionan en la documentación del HDM-4, por lo que se omite su reproducción en este documento.

En términos generales, las fórmulas estiman las emisiones con base en el consumo instantáneo de combustible, la edad del vehículo y la velocidad, y las variables asociadas de emisión a cada tipo de contaminante. Este valor se multiplica por la longitud del tramo, el volumen de tránsito por tipo de vehículo y el resultado se expresa en gramos por kilómetro para cada mil vehículos.

2.3.2 Resultados de la estimación de emisiones

Los contaminantes estimados para el presente trabajo son seis: hidrocarburos, óxidos de nitrógeno, dióxido de azufre, monóxido de carbono, partículas suspendidas (PM) y dióxido de carbono. Como descripción general en relevancia a cada contaminante, se presenta la siguiente información que incluye características particulares, para acentuar la importancia de su estimación.

2.3.2.1 Óxidos de carbono

El monóxido de carbono (CO) es un gas incoloro e inodoro que resulta de la combustión incompleta de combustibles fósiles. La mayor proporción del CO emitido en áreas urbanas proviene de los vehículos automotores. La exposición de individuos no fumadores a niveles de CO menores que 15 a 20 partes por millón (ppm) aparentemente no produce efectos adversos en la salud. En niveles superiores a estos, la composición (carboxihemoglobina) en la sangre se eleva, ocasionando alteraciones en los sistemas nervioso y cardiovascular.

2.3.2.2 Óxidos de nitrógeno

El término óxidos de nitrógeno (NOx) es un concepto amplio que incluye el monóxido de nitrógeno (NO), el bióxido de nitrógeno (NO2) y otros óxidos de nitrógeno menos comunes. En general, estos compuestos se forman durante los procesos de combustión de los combustibles, son precursores del ozono y normalmente son eliminados de la atmósfera por procesos de deposición seca y húmeda. No se considera que el NO cause efectos adversos sobre la salud en concentraciones ambientales; sin embargo, la exposición al NO2 puede ocasionar irritación del tracto respiratorio y, si la exposición se prolonga, puede provocar disminución en la función pulmonar.

La formación del NOx depende del contenido de nitrógeno en el combustible, y puede constituir hasta el 50% de las emisiones de NOx en combustibles con alto

contenido de nitrógeno, principalmente el carbón y los combustibles pesados, como el diésel.

2.3.2.3 Óxidos de azufre

El término óxidos de azufre (SOx) se refiere al bióxido de azufre (SO₂) y a otros óxidos de este elemento. El SO₂ es un gas incoloro de fuerte olor, que se forma por la combustión de combustibles fósiles que contienen azufre. Estos compuestos son irritantes respiratorios y pueden ocasionar una reacción similar al asma; o bien, agravar una condición asmática previa. Los síntomas de una exposición a elevadas concentraciones ambientales incluyen: tos, flujo nasal y falta de aliento, y pueden ser más severos en fumadores. Las plantas de generación de energía eléctrica que usan carbón o combustóleo con elevado contenido de azufre pueden ser fuentes importantes de SO₂. Algunas veces, el SO₂ emitido se oxida para formar trióxido de azufre (SO₃) y posteriormente ácido sulfúrico (H₂SO₄) o aerosoles sulfatados (SO₄₂₋). La magnitud de las emisiones de SOx de las fuentes de combustión depende del contenido de azufre en el combustible utilizado, que principalmente es el diésel.

Ambientalmente, los SOx intensifican el problema de la deposición ácida, ya sea a través de la lluvia, niebla o nieve; también puede ser por la deposición seca de partículas ácidas (aerosoles). La precipitación neutral debería tener un pH natural entre 7 y 5.6 [Seinfeld, 1986]; sin embargo, la combinación de óxidos de nitrógeno y de azufre con el vapor de agua en la atmósfera producen ácido sulfúrico y nítrico que bajan el pH acidificando su deposición en la superficie, lo que modifica de forma significativa el medio. Adicionalmente, el tamaño de las partículas de sulfato también tiende a ser pequeño (diámetros de 0.2-0.9 µm); en consecuencia, pueden ser un componente significativo de las partículas finas y afectar adversamente la visibilidad.

2.3.2.4 Compuestos orgánicos volátiles (COV)

Los compuestos orgánicos son emitidos a la atmósfera por diversas fuentes. Sin embargo, existe la consideración general de que los compuestos orgánicos son emitidos, principalmente, por fuentes de combustión o de evaporación. En conjunto, los gases considerados en las emisiones de hidrocarburos son conocidos como compuestos orgánicos totales (COT). Para el contexto de la calidad del aire, éstos se manejan como hidrocarburos (HC) emitidos por la quema incompleta del combustible. Este concepto incluye todos los compuestos carbonados, excepto los carbonatos, carburos metálicos, monóxido de carbono (CO₂) y ácido carbónico.

Los COV son gases fotoquímicamente reactivos formados por hidrocarburos que pueden participar en la formación de esmog. Algunos de los compuestos en esta

categoría de contaminantes incluyen aldehídos tales como el formaldehído y acetaldehído, además de compuestos aromáticos como el benceno. La exposición de corto plazo a estas sustancias puede ocasionar la irritación del tracto respiratorio. En el largo plazo, la exposición a ciertas especies de compuestos orgánicos puede incrementar los casos de cáncer. Varias de las especies de COV son, de hecho, consideradas como contaminantes tóxicos del aire.

2.3.2.5 Partículas suspendidas (PM)

El término partículas suspendidas o material particulado (PM) se refiere a cualquier partícula sólida o líquida de hollín, polvo, aerosoles, humos y nieblas. Algunas clasificaciones de PM incluyen partículas totales, partículas primarias y secundarias, partículas suspendidas totales (PST), partículas suspendidas (PS), partículas con diámetro aerodinámico menor que 10 micras (PM₁₀), partículas con diámetro aerodinámico menor que 2.5 micras (PM_{2.5}), así como partículas filtrables y condensables. Las partículas primarias incluyen materiales sólidos, líquidos o gaseosos emitidos directamente por las fuentes de emisión y que pueden mantenerse en la atmósfera como partículas en condiciones ambientales de temperatura y presión. Las partículas secundarias son aerosoles formados a partir de material gaseoso a través de reacciones químicas atmosféricas.

Los factores de emisión están referidos a las partículas primarias; por lo tanto, el término PM, en este caso, es utilizado para describir las emisiones que sólo representan el material particulado primario total y conjuntan tanto a las PM_{10} como $PM_{2.5}$. El tamaño de las partículas PM_{10} o $PM_{2.5}$ les permite entrar fácilmente en los espacios alveolares de los pulmones humanos, donde pueden depositarse y causar efectos adversos sobre la salud. Las partículas que logran penetrar el tracto respiratorio pueden causar: tos, dificultad para respirar, alteraciones en la función respiratoria, e incluso cambios fisiológicos en el pulmón. Estudios consideran que el aumento en los niveles ambientales de partículas es responsable del incremento en la mortalidad y morbilidad de individuos con condiciones cardiovasculares o respiratorias previas. Sin embargo, ha sido difícil establecer los niveles en los que aparecen los efectos adversos, debido a la presencia de otras sustancias tóxicas que también podrían ser responsables de los efectos detectados. Adicionalmente, las emisiones de $PM_{2.5}$ también causan problemas de visibilidad por la presencia de aerosoles.

2.3.3 Tipos de resultados

Con el uso del módulo ambiental para estimar la cantidad de emisiones integrado en el HDM-4, se tiene la posibilidad de conocer la cantidad de emisiones generadas en una red carretera o segmento de la misma, por la operación del transporte que circula sobre ella.

Además de las emisiones anuales totales y por vehículo, la variación anual neta de las emisiones como consecuencia de las distintas obras y alternativas de construcción con un caso base (sin proyecto o mínimo), que normalmente representa el estándar mínimo de conservación rutinario, puede también analizarse con el HDM-4.

Una vez realizado el análisis, el modelo permite generar tres tipos de reportes:

- Emisiones anuales por vehículo
- Resumen de emisiones anuales
- Variación anual neta de las emisiones de los vehículos

Con los reportes que arroja el modelo se puede utilizar la información para presentarla en gráficas o tablas, así como el desarrollo de indicadores.

2.3.4 Definición de indicadores

El objetivo de un indicador ambiental es permitir conocer la dimensión del efecto que se desea conocer, tanto el efecto descriptivo para caracterizarlo como la estimación de la magnitud en términos absolutos.

Los indicadores de impacto ambiental que se desarrollarán son de presión, para establecer el diagnóstico de la línea base desarrollada, de tal manera que se puedan tomar acciones que reviertan los impactos negativos que el transporte de carga está ejerciendo en el medio ambiente.

Para la construcción de los indicadores de emisiones se extrajeron únicamente las emisiones de CO₂ generadas por los vehículos destinados al transporte de carga, con el propósito de modelar un indicador ambiental en función de la longitud de cada corredor. Los indicadores de este apartado se formularon a partir de esta información, aunque se pueden definir otros tantos asociados al transporte de sustancias peligrosas, residuos sólidos, ruido, etc. Sin embargo, en esta investigación no son abordados por no contar con la información disponible para construir otro tipo de indicadores ambientales a fin de evaluar el impacto del transporte de carga por carretera.

2.3.4.1 Toneladas de CO₂ por kilómetro

Del total de emisiones que se generan en los 16 corredores de transporte de carga en México, se extrajeron aquellas generadas por vehículos utilitarios destinados al transporte de mercancías, particularmente las emisiones de CO₂. De esta esta manera, se suma el total de emisiones de CO₂ generadas por los vehículos para el transporte de mercancías. Las emisiones son diarias, ya que se utiliza el tránsito

promedio diario, pero también se pueden obtener también las emisiones anuales totales.

Se determinan las longitudes efectivas de los corredores de transporte de carga, tanto de forma individual, como para el total de los 16 corredores.

Finalmente, el indicador se obtiene para cada corredor como sigue:

$$E_{CO2} = \frac{\sum emisiones \ de \ CO2 \ de \ todo \ el \ corredor}{longitud \ efectiva \ del \ corredor}$$

Las unidades se expresan en toneladas para la cantidad de CO₂ generada; la longitud efectiva del corredor, en kilómetros, y el resultado directo se expresa en toneladas diarias de CO₂ por kilómetro.

La tabla 2.4 detalla las características del indicador de este apartado.

Tabla 2.4 Descripción del indicador Emisiones Ton de CO₂ por km

Característica	Descripción
Indicador:	Emisiones de CO ₂ por kilómetro
Periodo:	Anuales / Diarias
Unidad:	Toneladas
Qué mide:	La cantidad de emisiones de CO ₂ generadas por kilómetro recorrido de los vehículos
Que mide.	de carga
Tipo de indicador:	Presión
Cobertura geográfica:	Nacional

2.3.4.2 Gramos de CO₂ por vehículo por kilómetro

En los inventarios de emisiones, se asigna a cada vehículo un factor de emisión, de acuerdo con el tipo de tecnología de la unidad. Este indicador busca validar los resultados obtenidos, pero también proveer un factor de emisión del parque vehicular que circula en los corredores de transporte de carga en las carreteras en México.

De esta manera, el cálculo se basa en los resultados del indicador anterior. Para cada tramo carretero se obtuvo el total de emisiones en toneladas de CO₂ diarias por kilómetro recorrido de la longitud de análisis (ambos sentidos de circulación cuando la carretera cuenta con más de un cuerpo). Se procede a obtener el cociente entre el total de unidades que están circulando en el tramo carretero y se convierten las unidades a gramos por vehículo de CO₂ emitidos por cada kilómetro recorrido.

El resultado se puede expresar en cada tramo, pero nos interesa particularmente el promedio total de cada corredor.

La expresión siguiente nos permite obtener el indicador:

$$F_{emisi\acute{o}n} = \frac{E_{CO2} * 1x10^6}{TPDAveh\'{(culos pesados}}$$

La tabla 2.5 detalla las características del indicador de este apartado.

Tabla 2.5 Descripción del indicador del factor de emisión de CO₂ por km

Característica	Descripción
Indicador:	Factor de emisión promedio del parque vehicular para el transporte de carga
Periodo:	Diarias
Unidad:	Gramos por kilómetro
Qué mide:	La cantidad de emisiones de CO ₂ generadas en promedio por los vehículos de carga
Que mide.	en las carreteras federales de México
Tipo de indicador:	Presión
Cobertura geográfica:	Nacional

2.3.4.3 Toneladas de CO₂ por millón de toneladas-kilómetro

Para determinar este indicador de las emisiones de CO₂ que generan los vehículos de carga de acuerdo con cada tonelada transportada por kilómetro, se requiere información adicional de las estaciones de los estudios origen-destino, a fin de determinar la carga efectiva en las carreteras.

Las emisiones por kilómetro se determinaron con el indicador primero establecido. La carga ponderada se determina con información sobre peso bruto vehicular de los vehículos cargados y vacíos, porcentaje de vehículos cargados y vacíos, el peso de la carga promedio de los vehículos cargados, y con esta información se determina la carga ponderada.

$$Carga_{ponderada} \ = \frac{Carga \ promedio \ del \ veh\'iculo * Porcentaje \ de \ veh\'iculos \ cargados}{100}$$

Posteriormente se estiman las toneladas diarias transportadas mediante la siguiente ecuación.

$$Toneladas_{carga\ diaria\ estimada} = TPDA_{Veh\'{i}culos\ pesados}*\ Carga_{ponderada}$$

Finalmente, el indicador quedaría expresado como:

$$T_{CO2*Ton-km} = \frac{Toneladas\ de\ emisiones\ de\ CO2*1x10^6}{Longitud\ efectiva*\ Toneladas_{carga\ diaria\ estimada}}$$

La tabla 2.6 detalla las características del indicador de este apartado.

Tabla 2.6 Descripción del indicador de toneladas de CO₂ por millón de toneladas-kilómetro

Característica	Descripción					

Indicador:	Toneladas de CO ₂ por millón de toneladas-kilometro para el transporte de carga
Periodo:	Diarias
Unidad:	Toneladas
Qué mide:	La cantidad de emisiones de CO ₂ generadas en promedio por los vehículos de carga en las carreteras federales de México por cada millón de toneladas transportadas por kilómetro recorrido
Tipo de indicador:	Presión
Cobertura geográfica:	Nacional

2.3.5 Aseguramiento de la calidad

El paso final para una estimación exacta y útil de emisiones de consiste en evaluar su precisión, en lo general.

El desarrollo de evaluaciones independientes de la precisión de las estimaciones de las emisiones de vehículos automotores ha sido un proceso difícil debido a la gran cantidad de fuentes, el alcance geográfico de su operación y la diversidad de sus emisiones. A pesar de esta dificultad, las estimaciones deben someterse a un proceso de aseguramiento y control de la calidad adecuado.

Una verificación de calidad adecuada para un inventario de emisiones consiste en la comparación de las emisiones de los vehículos automotores con las emisiones de todas las fuentes antropogénicas. La fracción de las emisiones totales representada por los vehículos automotores va a variar por contaminante y localidad. No existe una sola fracción que se aplique globalmente. De manera ideal, los resultados del inventario pueden compararse con los resultados históricos de la misma área, o con los resultados de otras áreas que tengan fuentes de emisión, móviles y estacionarias, similares. Esta revisión sólo arrojará una estimación aproximada de la racionalidad de las estimaciones de las emisiones. Será preciso llevar a cabo una investigación más minuciosa para determinar si los resultados de las fracciones de vehículos automotores difieren notablemente de los de otras regiones similares. Las discrepancias pueden deberse a errores en el inventario o a diferencias desconocidas en las características de las regiones.

Para el aseguramiento de la calidad se compararán las emisiones obtenidas por vehículo por kilómetro con la metodología utilizada, que se basa en el modelo del HDM-4, con los resultados del modelo propuesto por el Laboratorio de Investigaciones en Transporte (TRL, por sus siglas en inglés).

3 Desarrollo de la línea base de las emisiones de CO₂ del transporte de carga

En este apartado se desarrollará la línea base conforme a la metodología concebida y los indicadores propuestos; esa línea base representa el escenario de partida de las emisiones de GEI que genera la operación del transporte de carga en los 16 corredores carreteros y sus ramales en México.

En el inventario de emisiones realizado se estimó la cantidad diaria de gases emitidos a la atmósfera por la operación de vehículos en el transporte de mercancías en los corredores de transporte estudiados.

Cada corredor se subdividió en rutas, tramos carreteros y tramos homogéneos, en función del estado superficial del camino y del TDPA, con el propósito de simplificar el análisis y la interpretación de los resultados para permitir su modelización y seguimiento en el futuro.

La integración de cada tramo carretero se realizó de acuerdo al tipo de camino que lo conforma, el cual se clasifica de acuerdo con la tabla 3.1.

Tabla 3.1 Clasificación de la red de carreteras

Siglas	Tipo de carretera
RFL	Red Federal Libre
RFC	Red Federal Cuota
RFL/C	Red Federal Integrada por Tramos Libres y de Cuota
REL	Red Estatal Libre
REC	Red Estatal Cuota

Fuente: Elaboración propia

Los contaminantes estimados son seis: hidrocarburos, monóxido de carbono, óxidos de nitrógeno, dióxido de azufre, partículas suspendidas o en suspensión (PM) y dióxido de carbono.

Las emisiones se estimaron por tipo de vehículo, por lo que, del total de emisiones, se extraen las correspondientes a los vehículos de transporte de carga, por ser el que interesa conocer para poder desarrollar medidas de mitigación encaminadas a la reducción de CO₂ principalmente.

Los resultados de emisiones se muestran por eje carretero.

3.1 Corredores de transporte en México

En primer lugar, se detallará la composición de cada eje carretero, para identificar las carreteras que los conforman, las longitudes y el tipo de carretera que los integra con base en la clasificación mostrada en la tabla 3.1.

3.1.1 Corredor México-Nuevo Laredo

El corredor Ciudad de México-Nuevo Laredo está integrado por 16 carreteras que suman un total de aproximadamente 1,155.61 kilómetros. La tabla 3.2 muestra la composición del corredor.

Tabla 3.2 Secciones del corredor México-Nuevo Laredo

Tabla 3.2 Occolones del	INIEXICO-INUEVO Lai edo			
Carretera	Ruta	Clave ID	Longitud (km)	Clasificación
México-Querétaro	MEX 057D	1.01	150.90	RFL/C
Libramiento Norponiente de Querétaro	MEX 057D	1.02	37.50	RFC
Querétaro-San Luis Potosí	MEX 057	1.03	156.27	RFL
Libramiento Oriente de San Luis Potosí	MEX 057D	1.04	33.76	RFC
San Luis Potosí-Matehuala	MEX 057	1.05	157.00	RFL
Libramiento de Matehuala	MEX 057D	1.06	14.20	RFC
Matehuala-Ent. Puerto México	MEX 057D	1.07	193.53	RFL
Ent. Puerto México-La Carbonera	MEX 057D	1.08	37.06	RFC
Libramiento Oriente de Saltillo	MEX 057D	1.09	21.00	RFC
Saltillo-Monterrey	MEX 040	1.10	35.00	RFL
Saltillo-Monterrey cuota	MEX 040D	1.11	35.79	RFC
Libramiento Noroeste de Monterrey	N.L. S/N	1.12	35.40	RFL
Anillo Periférico de Monterrey	N.L. S/N	1.13	38.40	REC
Monterrey-Nuevo Laredo	MEX 085	1.14	57.10	RFL
Monterrey-Nuevo Laredo	MEX 085D	1.15	120.50	RFC
Libramiento de Nuevo Laredo II	MEX 02	1.16	32.20	REL
TOTAL			1155.61	

3.1.1.1 Ramal a Piedras Negras

El ramal a Piedras Negras inicia en Nuevo Laredo y está integrado por 3 carreteras que suman un total de aproximadamente 316.41 kilómetros. La tabla 3.3 muestra la composición del corredor.

Tabla 3.3 Secciones del Ramal Piedras Negras

Carretera	Ruta	Clave ID	Longitud (km)	Clasificación
Ojo Caliente-Santa Cruz	MEX-057	4.05.01	34.00	RFL
Saltillo-Monclova	MEX-057	4.05.02	45.21	RFL
Monclova-Piedras Negras	MEX-057	4.05.03	237.20	RFL
TOTAL			316.41	

3.1.2 Corredor México-Cd. Juárez

El corredor Ciudad de México-Cd. Juárez está integrado por 28 carreteras que suman un total de aproximadamente 2,003.14 kilómetros. La tabla 3.4 muestra la composición del corredor.

Tabla 3.4 Secciones del corredor México-Ciudad Juárez

Carretera	Ruta	Clave	Longitud (km)	Clasificación
México-Querétaro	MEX 57 D	2.01	168.50	RFL/C
Querétaro-Irapuato Libre	MEX 45	2.02	113.70	RFL
Querétaro-Irapuato Cuota	MEX 45 D	2.03	96.30	RFC
Nuevo Libramiento de Irapuato	MEX 45 D	2.04	11.20	RFL
Irapuato-León	MEX 45	2.05	61.10	RFL
León-Aguascalientes Libre	MEX 45	2.06	18.38	RFL
León-Aguascalientes Cuota	MEX 45 D	2.07	103.70	RFC
Aguascalientes-Zacatecas	MEX 45	2.08	40.00	RFL
Libramiento Rincón de Romos	MEX 45	2.09	10.00	RFL
Libramiento Noroeste de Zacatecas	ZAC D	2.10	21.00	REC
Guadalupe-Cosío	MEX 45 D	2.11	12.96	RFL/C
Cuauhtémoc-Osiris	MEX 45 D	2.12	32.00	RFC
Zacatecas-Durango	MEX 45	2.13	35.70	RFL
Libramiento de Víctor Rosales	MEX 45	2.14	12.20	RFC
Libramiento de Fresnillo	MEX 45 D	2.15	20.05	RFC
La Chicharrona-Cuencamé	MEX 49	2.16	199.15	RFL
Yerbanís-Gómez Palacio	MEX 49 D	2.17	102.00	RFC
Gómez Palacio-Jiménez	MEX 49	2.18	212.04	RFL
Gómez Palacio-Coralitos	MEX 49 D	2.19	155.38	RFC
Libramiento de Jiménez	MEX 49	2.20	3.40	RFL
Jiménez-Camargo	MEX 45	2.21	68.98	RFC
Camargo-Delicias	MEX 45 D	2.22	69.02	RFC
Libramiento Delicias-Meoqui	MEX 45	2.23	13.60	RFL
Delicias-Chihuahua	MEX 45	2.24	84.56	RFL
Chihuahua-Sacramento	MEX 45	2.25	13.60	RFC

Chihuahua-El Sueco	MEX 45	2.26	123.87	RFL
El Sueco-Villa Ahumada	MEX 45	2.27	83.63	RFC
Villa Ahumada-Cd. Juárez	MEX 45	2.28	117.72	RFL
TOTAL			2003.14	

3.1.3 Corredor México-Nogales

El corredor Ciudad de México-Nogales está integrado por 21 carreteras que suman un total de aproximadamente 2,437.49 kilómetros. La tabla 3.5 muestra la composición del corredor.

Tabla 3.5 Secciones del corredor México-Nogales

Tabla 3.5 Secciones del corredor Mexico-Nogales				
Carretera	Ruta	Clave	Longitud (km)	Clasificación
México-Toluca Libre	MEX 15	3.01	27.75	RFL
México-Toluca Cuota	MEX 15 D	3.02	19.20	RFC
Libramiento Toluca	EM D	3.03	31.00	REC
Toluca-Palmillas	MEX 55 D	3.04	54.79	RFL/C
Atlacomulco-Maravatío	MEX 15 D	3.05	63.62	RFC
Maravatío-Zapotlanejo	MEX 15 D	3.06	311.40	RFC
Zapotlanejo-Guadalajara	MEX 90 D	3.07	9.73	RFC
Zona Urbana Guadalajara	JAL	3.08	53.00	REL
Guadalajara-Tepic	MEX 15	3.09	12.20	RFL
Guadalajara-Tepic Cuota	MEX 15 D	3.10	168.62	RFC
Libramiento de Tepic	MEX 15	3.11	18.80	RFL
Tepic-Mazatlán	MEX 15	3.12	286.31	RFL
Tepic-Villa Unión	MEX 15 D	3.13	240.90	RFC
Libramiento de Mazatlán	MEX 15	3.14	5.40	RFL
Mazatlán-Culiacán	MEX 15 D	3.15	190.26	RFC
Culiacán-Las Brisas	SIN 001D	3.16	125.70	REC
Culiacán-Los Mochis	MEX 15	3.17	84.01	RFL
Est. Don-Nogales	MEX 15 D	3.18	694.20	RFL/C
Libramiento de Empalme	MEX 15 D	3.19	21.50	RFC
Libramiento de Magdalena de Kino	MEX 15 D	3.20	6.57	RFC
Libramiento de Nogales	MEX 15 D	3.21	12.50	RFC
TOTAL			2437.49	

3.1.3.1 Ramal a Tijuana

El ramal a Tijuana parte del corredor a Nogales y está integrado por 7 carreteras que suman un total de aproximadamente 761.13 kilómetros. La tabla 3.6 muestra la composición del corredor.

Tabla 3.6 Secciones del ramal a Tijuana

Carretera	Ruta	Clave ID	Longitud (km)	Clasificación
Santa Ana-Sonoita	MEX-002D	3.05.01	253.70	RFC
Sonoita-Mexicali	MEX-002	3.05.02	256.47	RFL
Libramiento de Mexicali	MEX-002D	3.05.03	41.00	RFC
El Centinela-La Rumorosa	MEX-002D	3.05.04	62.90	RFC
La Rumorosa-Tecate	MEX-002D	3.05.05	30.56	RFC
Libramiento de Tecate	MEX-002D	3.05.06	99.40	RFC
Tecate-Tijuana	MEX-002D	3.05.07	17.10	RFC
TOTAL			761.13	

3.1.4 Corredor Manzanillo-Tampico

El corredor Manzanillo-Tampico está integrado por 20 carreteras que suman un total de aproximadamente 1,364.27 kilómetros. La tabla 3.7 muestra la composición del corredor.

Tabla 3.7 Secciones del corredor Manzanillo-Tampico

Tabla 3.7 Secciones del c				
Carretera	Ruta	Clave ID	Longitud (km)	Clasificación
Armería-Manzanillo Cuota	MEX 200 D	4.01	46.00	RFC
Colima-Ent. Tecomán	MEX 110	4.02	48.10	RFL/C
Libramiento Colima	MEX 54	4.03	9.00	RFL/C
Cd. Guzmán-Colima	MEX 54	4.04	4.10	RFL/C
Guadalajara-Colima Cuota	MEX 54 D	4.05	148.00	RFC
Jiquilpan-Guadalajara	MEX 15	4.06	21.04	RFL
Zapotlanejo-Guadalajara (Cuota)	MEX-090D	4.07	37.70	RFC
Lagos de Moreno-Guadalajara	MEX-080	4.08	200.95	RFL
Zapotlanejo-Lagos de Moreno (Cuota)	MEX-080D	4.09	118.91	RFC
San Luis Potosí-Lagos de Moreno	MEX-070-080	4.10	150.00	RFL
Lagos de Moreno-Villa de Arriaga	MEX-070-080	4.11	76.93	RFL
Libramiento Villa de Arriaga	MEX-080	4.12	5.00	RFL
San Luis Potosí-Villa de Arriaga (Cuota)	SLP-D	4.13	80.50	REC
Cd. Valles-San Luis Potosí	MEX-070	4.14	6.94	REL
Libramiento Oriente de San Luis Potosí (Cuota)	MEX-057D	4.15	33.76	RFC
San Luis Potosí-Matehuala	MEX-057	4.16	31.80	RFL
Cerritos-Rioverde (Cuota)	SLP-D	4.17	103.00	REC
Cd. Valles-San Luis Potosí	MEX-070	4.18	93.00	RFL
Libramiento de Cd. Valles	MEX-070	4.19	11.54	RFL
Cd. Valles-Tampico	MEX-070	4.20	138.00	RFL

TOTAL		1364.27	

3.1.4.1 Ramal a Lázaro Cárdenas

El ramal a Lázaro Cárdenas parte del corredor a Tampico y está integrado por 10 carreteras que suman un total de aproximadamente 609.69 kilómetros. La tabla 3.8 muestra la composición del corredor.

Tabla 3.8 Secciones del ramal a Lázaro Cárdenas

Carretera	Ruta	Clave ID	Longitud (km)	Clasificación
León-Aguascalientes (Cuota)	MEX-045D	4.06.01	61	RFC
Irapuato-León	MEX-045	4.06.02	68.99	RFL
Nuevo Libramiento de Irapuato	MEX-045	4.06.03	15.20	RFL
Querétaro-Irapuato (Cuota)	MEX-045D	4.06.04	42.90	RFC
Morelia-Salamanca (Cuota)	MEX-090D	4.06.05	84.90	RFC
Morelia-Salamanca	MEX-090	4.06.06	25.00	RFL
Morelia-Pátzcuaro	MEX-014	4.06.07	53.00	RFL
Pátzcuaro-Uruapan (Cuota)	MEX-14D	4.06.08	46.70	RFC
Uruapan-Nueva Italia (Cuota)	MEX-14D	4.06.09	59.40	RFC
Nueva Italia-Lázaro Cárdenas (Cuota)	MEX-14D	4.06.10	152.60	RFC
TOTAL			609.69	

3.1.5 Corredor México-Veracruz

El corredor México-Veracruz está integrado por 6 carreteras que suman un total de aproximadamente 389.16 kilómetros. La tabla 3.9 muestra la composición del corredor.

Tabla 3.9 Secciones del corredor México-Veracruz

Carretera	Ruta	Clave	Longitud (Km)	Clasificación
México-Puebla Cuota	MEX 150D	5.01	107.19	RFC
Puebla-Acatzingo Cuota	MEX 150D	5.02	47.00	RFC
Acatzingo-Cd. Mendoza cuota	MEX 150D	5.03	95.30	RFC
Cd. Mendoza-Córdoba Cuota	MEX 150D	5.04	32.47	RFC
Libramiento Córdoba	MEX 150D	5.05	9.20	RFC
Córdoba-Veracruz Cuota	MEX 150D	5.06	98.00	RFC
TOTAL			389.16	

3.1.6 Corredor Veracruz-Monterrey (incluye ramal a Matamoros)

El corredor de Veracruz-Monterrey está integrado por 10 carreteras que suman un total de aproximadamente 1,291.32 kilómetros. La tabla 3.10 muestra la composición del corredor.

Tabla 3.10 Secciones del corredor Veracruz-Monterrey

Carretera	Ruta	Clave ID	Longitud (km)	Clasificación
Ciudad Victoria-Monterrey	MEX-085	6.01	263.95	RFL/C
Ignacio Zaragoza-T. C. (Ciudad Victoria-Monterrey)	MEX-083	6.02	94.30	RFC
González-Llera de Canales	MEX-081	6.03	61.80	RFL
Libramiento Estación Manuel-González	MEX-085	6.04	27.80	RFC
Tampico-Cd. Mante	MEX-080	6.05	56.00	RFL
Tuxpan-Tampico	MEX-180	6.06	221.30	RFC
Tihuatlán-Tuxpan	MEX-130D	6.07	37.50	RFL
Gutiérrez Zamora-Tihuatlán (Cuota)	MEX-130D	6.08	28.20	RFC
Poza Rica-Veracruz	MEX-180-180D	6.09	193.47	RFC
Cd. Victoria-Matamoros	MEX-101-180	6.10	307.00	RFL
TOTAL			1291.32	

3.1.7 Corredor Puebla-Oaxaca-Ciudad Hidalgo

El corredor Puebla-Oaxaca-Ciudad Hidalgo está integrado por 11 carreteras que suman un total de aproximadamente 1,095.14 kilómetros. La tabla 3.11 muestra la composición del corredor.

Tabla 3.11 Secciones del corredor Puebla-Cd. Hidalgo

Tabla 5.11 Occolones del corredor i debia Ga. Indaigo					
Carretera	Ruta	Clave ID	Longitud (km)	Clasificación	
Puebla-Acatzingo	MEX-150D	7.01	47.00	REC	
Acatzingo-Cd. Mendoza	MEX-150D	7.02	36.75	RFC	
Cuacnopalan-Oaxaca	MEX-135D	7.03	242.69	REC	
Huajuapan de León-Oaxaca	MEX 190	7.04	8.80	REL	
Oaxaca-Tehuantepec	MEX 190	7.05	251.70	REL	
Coatzacoalcos-Salina Cruz	MEX-185	7.06	18.40	REL	
Coatzacoalcos-Salina Cruz	MEX-185	7.07	42.25	REL	
La Ventosa-San Pedro Tanapatepec	MEX-190	7.08	91.80	REL	
Tapanatepec-Talismán	MEX-200	7.09	292.25	RFL	
Tapachula-Puerto Madero	MEX-225	7.10	14.50	REL	
Ent. Jaritas-Ciudad Hidalgo	MEX-225	7.11	49.00	RFL	
TOTAL			1095.14		

3.1.8 Corredor México-Puebla-Progreso

El corredor México-Puebla-Progreso está integrado por 13 carreteras que suman un total de aproximadamente 1,302.35 kilómetros. La tabla 3.12 muestra la composición del corredor.

Tabla 3.12 Secciones del corredor Puebla-Progreso

Carretera	Ruta	Clave ID	Longitud (km)	Clasificación
México-Puebla	MEX-150D	8.01	107.19	RFC
Puebla-Acatzingo	MEX-150D	8.02	47.00	RFC
Acatzingo-Cd. Mendoza	MEX-150D	8.03	95.30	RFC
Libramiento de Córdoba	MEX-150D	8.04	9.20	RFC
Córdoba-Veracruz	MEX-150D	8.05	60.00	RFC
La Tinaja-Cosoleacaque	MEX-145D	8.06	225.60	RFC
Nuevo Teapa-Cosoleacaque	MEX-180D	8.07	34.00	RFC
Coatzacoalcos-Villahermosa	MEX-180	8.08	156.55	RFL
Villahermosa-Cd. del Carmen	MEX-180	8.09	158.87	RFL
Cd. del Carmen-Campeche	MEX-180	8.10	199.51	RFL
Libramiento de Campeche	MEX-180	8.11	26.00	RFL

Campeche-Mérida	MEX-180	8.12	153.49	RFL
Mérida-Progreso	MEX-261	8.13	29.64	RFL
TOTAL			1302.35	

3.1.9 Corredor Peninsular de Yucatán

El corredor Peninsular de Yucatán está integrado por 5 carreteras que suman un total de aproximadamente 1,203.24 kilómetros. La tabla 3.13 muestra la composición del corredor.

Tabla 3.13 Secciones del corredor Peninsular de Yucatán

Carretera	Ruta	Clave ID	Longitud (km)	Clasificación
Villahermosa-Francisco Escárcega	MEX-186	9.01	284.14	RFL
Francisco Escárcega-Chetumal	MEX-186	9.02	261.50	RFL
Reforma Agraria-Puerto Juárez	MEX-307	9.03	357.48	RFL
Mérida-Cancún	MEX-180D	9.04	257.10	RFC
Mérida-Puerto Juárez	MEX-180	9.05	43.02	RFL
TOTAL			1203.24	

3.1.10 Corredor del Pacífico

El corredor del Pacífico está integrado por 11 carreteras que suman un total de aproximadamente 2,045.48 kilómetros. La tabla 3.14 muestra la composición del corredor.

Tabla 3.14 Secciones del corredor Pacífico

Carretera	Ruta	Clave ID	Longitud (km)	Clasificación
Tepic-Ixtapan de La Concepción	MEX-015	10.01	77.42	RFL
Ixtapan de La Concepción	NAY	10.02	20.00	REL
TepicPuerto Vallarta	MEX-200	10.03	89.37	RFL
Manzanillo-Puerto Vallarta	MEX-200	10.04	285.97	RFL
Libramiento de Manzanillo Norte	MEX-200	10.05	16.00	RFL
Armería-Manzanillo	MEX-200D	10.06	230.72	RFC
Playa Azul-Manzanillo	MEX-200	10.07	311.40	RFL
Zihuatanejo-La Mira	MEX-200	10.08	125.30	RFL
Acapulco-Zihuatanejo	MEX-200	10.09	238.83	RFL
Las Cruces-Pinotepa Nacional	MEX-200	10.10	261.47	RFL
Santiago Pinotepa Nacional-Salina Cruz	MEX-200	10.11	389.00	RFL
TOTAL			2045.48	

3.1.11 Corredor Mazatlán-Matamoros

El corredor Mazatlán-Matamoros está integrado por 10 carreteras que suman un total de aproximadamente 1,348.29 kilómetros. La tabla 3.15 muestra la composición del corredor.

Tabla 3.15 Secciones del corredor Mazatlán-Matamoros

Tabla 5.15 occolories del corredor mazatian matarior									
Carretera	Ruta	Clave ID	Longitud (km)	Clasificación					
Durango-Mazatlán	MEX-040D	11.01	227.70	RFC					
Libramiento de Durango	MEX-040D	11.02	23.60	RFC					
Durango-Yerbanís	MEX-040D	11.03	255.85	RFC					
Saltillo-Torreón	MEX-040	11.04	443.00	RFL					
Libramiento Norponiente de Saltillo	MEX-040D	11.05	42.00	RFC					
Saltillo-Monterrey Libre	MEX 040	11.06	35.00	RFL					
Saltillo-Monterrey Cuota	MEX-040D	11.07	35.79	RFC					
Monterrey-Reynosa	MEX-040	11.08	205.90	RFL					
Libramiento de Reynosa	MEX-040	11.09	20.00	RFL					
Matamoros-Reynosa	MEX-002	11.10	59.45	RFL					
TOTAL			1348.29						

3.1.12 Corredor Transpeninsular de Baja California

El corredor Transpeninsular de Baja California está integrado por 10 carreteras que suman un total de aproximadamente 1,878.61 kilómetros. La tabla 3.16 muestra la composición del corredor.

Tabla 3.16 Secciones del corredor Peninsular de Baja California

Carretera	Ruta	Clave ID	Longitud (km)	Clasificación
Tijuana-Ensenada	MEX-001D	12.01	94.49	RFL
Ensenada-Lázaro Cárdenas	MEX-001	12.02	208.00	RFC
Lázaro Cárdenas-Ent. Punta Prieta	MEX-001	12.03	297.82	REC
Ent. Punta Prieta-Guerrero Negro	MEX-001	12.04	131.00	RFC
Santa Rosalía-Guerrero Negro	MEX-001	12.05	214.00	RFC
Loreto-Santa Rosalía	MEX-001	12.06	203.00	RFC
Cd. Insurgentes-Loreto	MEX-001	12.07	125.00	RFC
La Paz-Cd. Insurgentes	MEX-001	12.08	242.00	RFL
Cabo San Lucas-La Paz	MEX-001	12.09	223.30	RFL
San Pedro-Cabo San Lucas	MEX-001	12.10	140.00	RFC
TOTAL			1878.61	

3.1.13 Corredor del Altiplano

El corredor del Altiplano está integrado por 7 carreteras que suman un total de aproximadamente 587.15 kilómetros. La tabla 3.17 muestra la composición del corredor.

Tabla 3.17 Secciones del corredor del Altiplano

Carretera	Ruta	Clave ID	Longitud (km)	Clasificación
Toluca-Palmillas	EM(D)-MEX-055	13.01	15.00	REFL
Libramiento Norte de la Ciudad de México	MEX-040D	13.02	222.00	RFC
México-Puebla	MEX-150D	13.03	38.79	REC
Puebla-Acatzingo	MEX-150D	13.04	80.42	RFC
Amozoc-Perote	MEX-040D	13.05	70.19	RFC
Libramiento Perote	MEX-140D	13.06	17.80	RFC
San Hipólito-Xalapa	MEX-140D	13.07	142.95	RFC
TOTAL			587.15	

3.1.14 Corredor Acapulco-Tuxpan

El corredor Acapulco-Tuxpan está integrado por 14 carreteras que suman un total de aproximadamente 1,022.84 kilómetros. La tabla 3.18 muestra la composición del corredor.

Tabla 3.18 Secciones del corredor Acapulco-Tuxpan

Carretera	Ruta	Clave ID	Longitud (km)	Clasificación
Cuernavaca-Acapulco	MEX-095D	14.01	277.16	RFC
Libramiento de Cuernavaca	MEX-095D	14.02	16.54	RFC
MéxicoCuernavaca	MEX-095D	14.03	21.76	RFC
La PeraCuautla	MEX-095D	14.04	34.34	RFC
Santa BárbaraIzúcar de Matamoros	MEX-115-160	14.05	24.31	REL
AtlixcoJantetelco	PUE-D	14.06	58.90	REC
PueblaAtlixco	PUE-D	14.07	29.30	REC
PueblaAcatzingo	MEX-150D	14.08	47.00	RFC
AcatzingoCd. Mendoza	MEX-150D	14.09	95.30	RFC
Libramiento de Córdoba	MEX-150D	14.10	49.20	RFC
CórdobaVeracruz	MEX-150D	14.11	113.00	RFC
Poza RicaVeracruz	MEX-180-180D	14.12	190.33	RFL/C
Gutiérrez ZamoraTihuatlán	MEX-130D	14.13	28.20	RFC
TihuatlánTuxpan	MEX-130D	14.14	37.50	RFC
TOTAL			1022.84	

3.1.15 Corredor Acapulco-Veracruz

El corredor Acapulco-Veracruz está integrado por 11 carreteras que suman un total de aproximadamente 872.01 kilómetros. La tabla 3.19 muestra la composición del corredor.

Tabla 3.19 Secciones del corredor Acapulco--Veracruz

Tabla 3.19 Secciones del corredor Acapuicoveracia								
Carretera	Ruta	Clave ID	Longitud (km)	Clasificación				
CuernavacaAcapulco	MEX-095D	15.01	150.90	RFL/C				
Libramiento de Cuernavaca	MEX-095D	15.02	37.50	RFC				
MéxicoCuernavaca	MEX-095D	15.03	156.27	RFL				
La PeraCuautla	MEX-095D	15.04	33.76	RFC				
Santa BárbaraIzúcar de Matamoros	MEX-115-160	15.05	157.00	RFL				
AtlixcoJantetelco	PUE-D	15.06	14.20	RFC				
PueblaAtlixco	PUE-D	15.07	193.53	RFL				
PueblaAcatzingo	MEX-150D	15.08	37.06	RFC				
AcatzingoCd. Mendoza	MEX-150D	15.09	21.00	RFC				
Libramiento de Córdoba	MEX-150D	15.10	35.00	RFL				
CórdobaVeracruz	MEX-150D	15.11	35.79	RFC				
TOTAL			872.01					

3.1.16 Corredor Circuito Transístmico

El corredor Circuito Transístmico está integrado por 6 carreteras que suman un total de aproximadamente 799.57 kilómetros. La tabla 3.20 muestra la composición del corredor.

Tabla 3.20 Secciones del corredor Acapulco--Veracruz

Carretera	Ruta	Clave ID	Longitud (km)	Clasificación
CoatzacoalcosSalina Cruz	MEX-185	16.01	42.25	RFL
Ent. La VentosaSan Pedro Tanapatepec	MEX-190	16.02	91.80	RFL
TapanatepecTalismán	MEX-200	16.03	45.00	RFL
ArriagaOcozocoautla	MEX-200D	16.04	94.00	RFC
Las ChoapasOcozocoautla	MEX-187D	16.05	223.69	RFC
CoatzacoalcosSalina Cruz	MEX-185	16.06	302.83	RFL
TOTAL			799.57	

3.2 Emisiones vehiculares en los corredores de transporte en México

Como primera parte del análisis se realiza un inventario de emisiones de todos los corredores, el cual incluye la cuantificación de seis contaminantes de todos los vehículos que transitan diariamente en las diferentes carreteras que integran los corredores.

La estimación en todos los casos es diaria y se realiza una estimación anual en el texto. El año de referencia para la línea base es 2012.

3.2.1 Corredor México-Nuevo Laredo

La tabla 3.21 muestra el total de emisiones por tipo de contaminante, donde el dióxido de carbono representa 15,381.89 toneladas diarias emitidas o 5.6 megatoneladas anuales, convirtiéndose en el mayor gas emitido, seguido por el monóxido de carbono con 272.84 toneladas diarias.

Tabla 3.21 Toneladas diarias por tipo de emisión, corredor México-Nuevo Laredo

Carretera	Clave ID	НС	СО	NOx	PM	CO ₂	SO ₂
México-Querétaro	1.01	16.20	108.30	52.86	1.24	3792.46	0.60
Libramiento Norponiente de Querétaro	1.02	1.18	4.21	7.29	0.21	420.65	0.08
Querétaro-San Luis Potosí	1.03	7.42	48.16	32.86	0.72	2291.84	0.39
Libramiento Oriente de San Luis Potosí	1.04	0.58	2.14	5.06	0.13	335.16	0.06
San Luis Potosí-Matehuala	1.05	4.67	24.42	26.10	0.67	1741.13	0.31
Libramiento de Matehuala	1.06	0.21	0.97	1.65	0.04	113.60	0.02
Matehuala-Ent. Puerto México	1.07	4.95	20.68	32.47	0.86	2074.12	0.38
Puerto México-La Carbonera	1.08	0.82	3.56	6.70	0.17	456.81	0.09
Libramiento Oriente de Saltillo	1.09	0.30	1.31	2.61	0.06	181.92	0.03
Saltillo-Monterrey	1.10	1.72	9.71	9.31	0.23	635.43	0.11
Saltillo-Monterrey cuota	1.11	0.54	3.31	2.68	0.06	182.77	0.03
Libramiento Noroeste de Monterrey	1.12	1.93	11.40	9.74	0.23	668.59	0.12
Anillo Periférico de Monterrey	1.13	0.30	1.78	1.50	0.04	104.33	0.02
Monterrey-Nuevo Laredo	1.14	2.11	12.66	9.91	0.24	683.99	0.12
Monterrey-Nuevo Laredo	1.15	3.45	19.18	21.96	0.50	1519.63	0.27
Libramiento de Nuevo Laredo II	1.16	0.34	1.04	2.83	0.08	179.46	0.03
TOTAL		46.72	272.84	225.54	5.47	15381.89	2.67

Las emisiones de CO₂ representan el 96.53% de las emisiones generadas en el corredor.

El tramo carretero que mayores emisiones de CO₂ genera en el corredor, es la carretera México--Querétaro, con una participación de 3,792.46 toneladas diarias. Esto representa el 24.65% del total de emisiones generadas en el corredor diariamente. Los tramos que le siguen en cuanto a generación de emisiones son la carretera Querétaro-San Luis Potosí, Matehuala-Entronque Puerto México y San Luis Potosí-Matehuala.

3.2.1.1 Ramal a Piedras Negras

La tabla 3.22 muestra el total de emisiones por tipo de contaminante, donde el dióxido de carbono representa 1,174.51 toneladas diarias emitidas o 0.4 megatoneladas anuales, convirtiéndose en el mayor gas emitido, seguido por el monóxido de carbono con 43.06 toneladas diarias.

Tabla 3.22 Toneladas diarias por tipo de emisión, Ramal a Piedras Negras

Carretera	Clave ID	НС	СО	NOx	PM	CO ₂	SO ₂
Ojo CalienteSanta Cruz	4.05.01	0.27	1.74	1.08	0.03	76.43	0.01
SaltilloMonclova	4.05.02	1.83	13.86	3.91	0.08	307.19	0.04
MonclovaPiedras Negras	4.05.03	3.85	27.46	11.09	0.24	790.89	0.12
TOTAL		5.94	43.06	16.08	0.35	1174.51	0.18

Las emisiones de CO₂ representan el 95.10% de las emisiones generadas en el ramal.

El tramo carretero que mayores emisiones de CO₂ genera en el ramal, es la carretera Monclova-Piedras Negras, con una participación de 790.89 toneladas diarias. Esto representa el 67.3% del total de emisiones producidas en el ramal diariamente.

3.2.2 Corredor México-Cd. Juárez

La tabla 3.23 muestra el total de emisiones por tipo de contaminante, donde el dióxido de carbono representa 14,988.43 toneladas diarias emitidas o 5.5 megatoneladas anuales, convirtiéndose en el mayor gas emitido, seguido por el monóxido de carbono con 453.56 toneladas diarias.

Tabla 3.23 Toneladas diarias por tipo de emisión, corredor México- Ciudad Juárez

Carretera	Clave	нс	со	NOx	PM	CO ₂	SO ₂
México-Querétaro	2.01	20.80	138.82	63.82	1.57	4601.25	0.73
Querétaro-Irapuato Libre	2.02	9.27	68.66	22.99	0.45	1637.99	0.24
Querétaro-Irapuato Cuota	2.03	5.51	38.12	18.72	0.41	1284.98	0.21

Nuevo Libramiento de Irapuato	2.04	0.71	5.00	1.92	0.05	143.13	0.02
Irapuato-León	2.05	7.34	54.53	17.69	0.34	1241.23	0.18
León-Aguascalientes Libre	2.06	1.24	9.19	2.91	0.05	203.57	0.03
León-Aguascalientes Cuota	2.07	1.85	12.38	7.05	0.16	488.83	0.08
Aguascalientes-Zacatecas	2.08	1.89	14.37	4.05	0.07	297.33	0.04
Libramiento Rincón de Romos	2.09	0.20	1.32	0.72	0.02	50.03	0.01
Libramiento Noroeste de Zacatecas	2.10	0.15	0.85	0.92	0.02	64.20	0.01
Guadalupe-Cosío	2.11	0.12	0.94	0.24	0.00	16.73	0.00
Cuauhtémoc-Osiris	2.12	0.45	3.00	1.68	0.04	114.45	0.02
Zacatecas-Durango	2.13	1.34	9.64	3.69	0.07	255.60	0.04
Libramiento de Víctor Rosales	2.14	0.33	2.28	1.04	0.02	71.48	0.01
Libramiento de Fresnillo	2.15	0.19	1.17	0.86	0.02	59.15	0.01
La Chicharrona-Cuencamé	2.16	2.07	12.23	10.47	0.26	722.06	0.13
Yerbanís-Gómez Palacio	2.17	0.63	4.14	2.64	0.06	183.80	0.03
Gómez Palacio-Jiménez	2.18	1.54	8.14	8.67	0.23	579.19	0.10
Gómez Palacio-Coralitos	2.19	0.77	4.06	5.29	0.13	371.49	0.07
Libramiento de Jiménez	2.20	0.05	0.32	0.21	0.01	14.46	0.00
Jiménez-Camargo	2.21	0.63	3.60	3.78	0.09	265.44	0.05
Camargo-Delicias	2.22	1.15	7.58	4.73	0.10	324.42	0.05
Libramiento Delicias-Meoqui	2.23	0.48	3.44	1.32	0.03	93.10	0.01
Delicias-Chihuahua	2.24	2.65	18.50	8.50	0.18	591.19	0.09
Chihuahua-Sacramento	2.25	0.23	1.63	0.71	0.02	50.46	0.01
Chihuahua-El Sueco	2.26	1.71	10.75	7.71	0.19	535.54	0.09
El Sueco-Villa Ahumada	2.27	0.89	5.95	3.47	0.08	240.10	0.04
Villa Ahumada-Cd. Juárez	2.28	1.92	12.93	6.99	0.16	487.20	0.08
TOTAL		66.11	453.56	212.76	4.84	14988.43	2.39

Las emisiones de CO₂ representan el 95.30% de las emisiones generadas en el corredor.

El tramo carretero con mayores emisiones de CO₂ emitidas en el corredor es la carretera México--Querétaro, con una participación de 4,601.25 toneladas diarias. Esto representa el 30.70% del total de emisiones emitidas en el corredor. Los tramos que le siguen en generación de emisiones son la carretera Querétaro-Irapuato Libre, Querétaro-Irapuato Cuota e Irapuato-León.

3.2.3 Corredor México-Nogales

La tabla 3.24 muestra el total de emisiones por tipo de contaminante, donde el dióxido de carbono representa 13,421.07 toneladas diarias o 4.9 megatoneladas anuales emitidas, convirtiéndose en el mayor gas emitido, seguido por el monóxido de carbono con 412.6 toneladas diarias.

Tabla 3.24 Toneladas diarias por tipo de emisión, corredor México-Nogales

Carretera	Clave	нс	со	NOx	PM	CO ₂	SO ₂
México-Toluca Libre	3.01	3.48	26.34	7.66	0.14	580.61	0.08
México-Toluca Cuota	3.02	2.35	18.14	4.47	0.06	303.24	0.04
Libramiento Toluca	3.03	3.28	24.97	7.01	0.11	497.46	0.06
Toluca-Palmillas	3.04	3.67	27.18	9.11	0.17	647.14	0.09
Atlacomulco-Maravatío	3.05	1.37	9.95	3.65	0.07	248.85	0.04
Maravatío-Zapotlanejo	3.06	5.67	40.14	17.46	0.35	1195.84	0.18
Zapotlanejo-Guadalajara	3.07	0.68	4.73	2.20	0.04	150.62	0.02
Zona Urbana Guadalajara	3.08	3.93	28.34	11.12	0.23	798.17	0.12
Guadalajara-Tepic	3.09	0.91	6.78	2.14	0.05	167.08	0.02
Guadalajara-Tepic Cuota	3.10	3.22	21.03	13.05	0.31	909.37	0.15
Libramiento de Tepic	3.11	1.25	9.45	2.79	0.06	220.69	0.03
Tepic-Mazatlán	3.12	3.76	25.60	12.41	0.29	877.86	0.14
Tepic-Villa Unión	3.13	1.64	10.05	8.58	0.21	608.22	0.11
Libramiento de Mazatlán	3.14	0.39	2.93	0.83	0.02	65.70	0.01
Mazatlán-Culiacán	3.15	2.21	13.67	11.18	0.26	781.07	0.14
Culiacán-Las Brisas	3.16	1.58	10.68	5.89	0.13	407.96	0.07
Culiacán-Los Mochis	3.17	3.30	23.50	10.04	0.21	703.13	0.11
Est. Don-Nogales	3.18	15.69	106.29	59.04	1.26	4118.88	0.67
Libramiento de Empalme	3.19	0.28	1.89	1.16	0.03	81.13	0.01
Libramiento de Magdalena de Kino	3.20	0.09	0.57	0.41	0.01	28.62	0.00
Libramiento de Nogales	3.21	0.08	0.37	0.47	0.01	29.42	0.01
TOTAL		58.81	412.60	190.66	4.01	13421.07	2.10

Las emisiones de CO₂ representan el 95.60% de las emisiones generadas en el corredor.

El tramo carretero que mayores emisiones generó de CO₂ en el corredor es la carretera Est. Don-Nogales, con una participación de 4,118.88 toneladas diarias. Esto representa el 30.69% del total de emisiones generadas en el corredor. Los tramos que le siguen en generación de emisiones son la carretera Maravatío-Zapotlanejo, Guadalajara-Tepic Cuota y Tepic-Mazatlán.

3.2.3.1 Ramal a Tijuana

La tabla 3.25 muestra el total de emisiones por tipo de contaminante, donde el dióxido de carbono representa 2338.19 toneladas diarias o 0.8 megatoneladas anuales emitidas, convirtiéndose en el mayor gas emitido, seguido por el monóxido de carbono con 63.8 toneladas diarias.

Tabla 3.25 Toneladas diarias por tipo de emisión, Ramal a Tijuana.

Carretera	Clave ID	НС	СО	NOx	PM	CO ₂	SO ₂
Santa AnaSonoita	3.05.01	3.11	20.42	12.81	0.29	899.52	0.15
SonoitaMexicali	3.05.02	3.53	23.34	12.54	0.28	859.37	0.14
Libramiento de Mexicali	3.05.03	0.21	1.31	1.09	0.02	74.81	0.01
El CentinelaLa Rumorosa	3.05.04	0.92	6.52	2.91	0.06	201.75	0.03
La RumorosaTecate	3.05.05	0.41	3.01	1.15	0.02	78.72	0.01
Libramiento de Tecate	3.05.06	1.09	8.02	2.87	0.05	194.30	0.03
TecateTijuana	3.05.07	0.16	1.18	0.43	0.01	29.72	0.00
TOTAL		9.44	63.80	33.80	0.73	2338.19	0.38

Las emisiones de CO₂ representan el 95.88% de las emisiones generadas en el ramal.

El tramo carretero que mayores emisiones de CO₂ genera en el ramal es la carretera Santa Ana--Sonoita, con una participación 899.52 toneladas diarias. Esto representa el 38.5% del total de emisiones generadas en el ramal diariamente.

3.2.4 Corredor Manzanillo-Tampico

La tabla 3.26 muestra el total de emisiones por tipo de contaminante, donde el dióxido de carbono representa 8956.13 toneladas diarias o 3.27 megatoneladas anuales emitidas convirtiéndose en el mayor gas emitido, seguido por el monóxido de carbono con 263.7 toneladas diarias.

Tabla 3.26 Toneladas diarias por tipo de emisión, corredor Manzanillo-Tampico

Carretera	Clave ID	НС	СО	NOx	PM	CO ₂	SO ₂
Armería-Manzanillo Cuota	4.01	0.69	4.76	2.45	0.05	169.82	0.03
Colima-Ent. Tecomán	4.02	2.05	14.80	5.68	0.12	411.13	0.06
Libramiento Colima	4.03	0.36	2.61	0.96	0.02	67.60	0.01
Cd. Guzmán-Colima	4.04	0.27	2.02	0.69	0.01	46.46	0.01
Guadalajara-Colima Cuota	4.05	3.46	23.87	12.36	0.27	856.58	0.14
Jiquilpan-Guadalajara	4.06	1.96	14.87	4.31	0.07	308.28	0.04
ZapotlanejoGuadalajara (Cuota)	4.07	2.32	16.38	7.01	0.14	477.05	0.07

Lagos de MorenoGuadalajara	4.08	11.59	85.74	28.79	0.58	2070.37	0.30
ZapotlanejoLagos de Moreno (Cuota)	4.09	3.07	20.37	12.26	0.27	843.71	0.14
San Luis PotosíLagos de Moreno	4.10	1.94	13.16	6.68	0.16	480.04	0.08
Lagos de MorenoVilla de Arriaga	4.11	0.45	1.76	2.56	0.08	150.34	0.03
Libramiento Villa de Arriaga	4.12	0.03	0.19	0.12	0.00	8.37	0.00
San Luis PotosíVilla de Arriaga (Cuota)	4.13	0.95	5.48	5.51	0.13	385.36	0.07
Cd. VallesSan Luis Potosí	4.14	0.30	2.22	0.70	0.02	51.55	0.01
Libramiento Oriente de San Luis Potosí (Cuota)	4.15	0.60	2.33	5.14	0.13	341.17	0.06
San Luis PotosíMatehuala	4.16	4.60	28.56	21.29	0.51	1474.92	0.26
CerritosRioverde (Cuota)	4.17	0.65	4.44	2.27	0.05	159.99	0.03
Cd. VallesSan Luis Potosí	4.18	0.59	4.18	1.79	0.04	127.28	0.02
Libramiento de Cd. Valles	4.19	0.14	0.99	0.41	0.01	29.45	0.00
Cd. VallesTampico	4.20	2.13	14.98	6.88	0.17	496.66	0.08
TOTAL	38.12	263.70	127.86	2.84	1.44	8956.13	38.12

Las emisiones de CO₂ representan el 98.4% de las emisiones generadas en el corredor.

El tramo carretero que mayores emisiones generó de CO₂ en el corredor es la carretera Lagos de Moreno--Guadalajara, con una participación de 2070.37 toneladas diarias. Esto representa el 23.12% del total de emisiones emitidas en el corredor anualmente. Los tramos que le siguen en generación de emisiones son la carretera San Luis Potosí--Matehuala, Guadalajara-Colima Cuota y Zapotlanejo--Lagos de Moreno (Cuota).

3.2.4.1 Ramal a Lázaro Cárdenas

La tabla 3.27 muestra el total de emisiones por tipo de contaminante, donde el dióxido de carbono representa 3,967.15 toneladas diarias o 1.4 megatoneladas anuales emitidas, convirtiéndose en el mayor gas emitido; le sigue el monóxido de carbono con 171.72 toneladas diarias.

Tabla 3.27 Toneladas diarias por tipo de emisión, Ramal a Lázaro Cárdenas.

Carretera	Clave ID	НС	СО	NOx	PM	CO ₂	SO ₂
LeónAguascalientes (Cuota)	4.06.01	1.15	7.69	4.44	0.10	308.97	0.05
IrapuatoLeón	4.06.02	9.75	72.29	22.47	0.42	1594.24	0.22
Nuevo Libramiento de Irapuato	4.06.03	0.93	6.61	2.39	0.06	179.17	0.03
QuerétaroIrapuato (Cuota)	4.06.04	1.06	7.26	3.82	0.08	262.51	0.04
MoreliaSalamanca (Cuota)	4.06.05	0.81	5.81	2.32	0.04	154.85	0.02
MoreliaSalamanca	4.06.06	2.91	22.43	5.57	0.10	408.82	0.05
MoreliaPátzcuaro	4.06.07	3.91	29.39	7.81	0.10	506.17	0.06
PátzcuaroUruapan (Cuota)	4.06.08	0.99	7.21	2.50	0.04	165.81	0.02
UruapanNueva Italia (Cuota)	4.06.09	0.81	5.81	2.27	0.04	153.13	0.02
Nueva ItaliaLázaro Cárdenas (Cuota)	4.06.10	1.03	7.22	3.40	0.07	233.49	0.04
TOTAL		23.35	171.72	56.98	1.07	3967.15	0.57

Las emisiones de CO₂ representan el 94.47% de las emisiones emitidas en el ramal.

El tramo carretero que mayores emisiones de CO₂ emitidas en el ramal es la carretera Irapuato--León con una participación 1,594.24 toneladas diarias. Esto representa el 40.2% del total de emisiones emitidas en el ramal diariamente.

3.2.5 Corredor México-Veracruz

La tabla 3.28 muestra el total de emisiones por tipo de contaminante, donde el dióxido de carbono representa 5,065.62 toneladas diarias o 1.8 megatoneladas anuales emitidas, convirtiéndose en el mayor gas emitido; le sigue el monóxido de carbono con 166.94 toneladas diarias.

Tabla 3.28 Toneladas diarias por tipo de emisión, corredor México-Veracruz

Carretera	Clave	нс	со	NOx	PM	CO ₂	SO ₂
México-Puebla Cuota	5.01	11.21	82.99	29.42	0.61	2118.68	0.31
Puebla-Acatzingo Cuota	5.02	4.44	31.02	14.12	0.29	958.57	0.15
Acatzingo-Cd. Mendoza cuota	5.03	3.28	21.81	12.55	0.30	875.96	0.15
Cd. Mendoza-Córdoba Cuota	5.04	1.77	11.98	6.34	0.16	453.20	0.07
Libramiento Córdoba	5.05	0.49	3.47	1.40	0.04	105.87	0.02
Córdoba-Veracruz Cuota	5.06	2.27	15.66	8.02	0.17	553.34	0.09
TOTAL		23.45	166.94	71.85	1.57	5065.62	0.79

Las emisiones de CO₂ representan el 99.03% de las emisiones emitidas en el corredor.

El tramo carretero que mayores emisiones generó de CO₂ en el corredor es la carretera México-Puebla Cuota , con una participación de 2,118.68 toneladas diarias. Esto representa el 41.83% del total de emisiones emitidas en el corredor. Los tramos que le siguen en generación de emisiones son la carretera Puebla-Acatzingo Cuota, Acatzingo-Cd. Mendoza cuota y Córdoba-Veracruz Cuota.

3.2.6 Corredor Veracruz-Monterrey (incluye ramal a Matamoros)

La tabla 3.29 muestra el total de emisiones por tipo de contaminante, donde el dióxido de carbono representa 5,347.48 toneladas diarias o 1.9 megatoneladas anuales emitidas, convirtiéndose en el mayor gas emitido, le sigue el monóxido de carbono con 143.07 toneladas diarias.

Tabla 3.29 Toneladas diarias por tipo de emisión, corredor Veracruz-Monterrey con ramal a Matamoros

Carretera	Clave ID	НС	СО	NOx	PM	CO ₂	SO ₂
Ciudad VictoriaMonterrey	6.01	8.37	61.62	23.61	0.53	1774.45	0.27
Ignacio Zaragoza-Ciudad Victoria	6.02	0.49	2.65	3.47	0.08	246.79	0.05
González-Llera de Canales	6.03	0.47	3.00	1.91	0.05	134.90	0.02
Libramiento Estación Manuel-González	6.04	0.16	0.93	1.00	0.03	71.59	0.01
Tampico-Cd. Mante	6.05	0.95	6.32	4.14	0.10	297.50	0.05
Tuxpan-Tampico	6.06	2.43	15.96	9.10	0.25	675.74	0.11
Tihuatlán-Tuxpan	6.07	0.60	4.52	1.45	0.04	115.24	0.02
Gutiérrez Zamora-Tihuatlán (Cuota)	6.08	0.31	2.11	1.23	0.03	87.93	0.01
Poza Rica-Veracruz	6.09	2.96	20.54	9.94	0.25	729.79	0.12
Cd. Victoria-Matamoros	6.10	3.90	25.42	16.85	0.41	1213.54	0.21
TOTAL		20.64	143.07	72.69	1.76	5347.48	0.87

Las emisiones de CO₂ representan el 96.01% de las emisiones emitidas en el corredor.

El tramo carretero que mayores emisiones generó de CO₂ en el corredor, es la carretera Ciudad Victoria-Monterrey, con una participación de 1,774.45 toneladas diarias. Esto representa el 33.18% del total de emisiones emitidas en el corredor. Los tramos que le siguen en generación de emisiones son la carretera Cd. Victoria-Matamoros, Poza Rica-Veracruz y Tuxpan-Tampico.

3.2.7 Corredor Puebla-Oaxaca-Ciudad Hidalgo

La tabla 3.30 muestra el total de emisiones por tipo de contaminante, donde el dióxido de carbono representa 4,857.94 toneladas diarias o 1.7 megatoneladas anuales emitidas, convirtiéndose en el mayor gas emitido; le sigue el monóxido de carbono con 234.6 toneladas diarias.

Tabla 3.30 Toneladas diarias por tipo de emisión, corredor Puebla-Oaxaca-Cd. Hidalgo

Carretera	Clave ID	НС	СО	NOx	PM	CO ₂	SO ₂
Puebla-Acatzingo	7.01	8.23	51.17	17.75	0.33	1107.00	0.22
Acatzingo-Cd. Mendoza	7.02	2.90	17.19	7.69	0.17	490.18	0.10
Cuacnopalan-Oaxaca	7.03	5.59	35.15	12.10	0.26	779.17	0.15
Huajuapan de León-Oaxaca	7.04	0.98	6.24	1.78	0.03	120.76	0.02
Oaxaca-Tehuantepec	7.05	3.85	24.75	6.81	0.11	438.16	0.09
Coatzacoalcos-Salina Cruz	7.06	1.06	6.24	2.86	0.06	188.93	0.04
Coatzacoalcos-Salina Cruz	7.07	1.31	7.87	3.27	0.07	215.23	0.04
La Ventosa-San Pedro Tanapatepec	7.08	1.59	9.85	3.80	0.07	244.91	0.05

Tapanatepec-Talismán	7.09	10.34	65.89	18.75	0.30	1136.97	0.22
Tapachula-Puerto Madero	7.10	0.88	5.73	1.20	0.01	67.57	0.01
Ent. Jaritas-Ciudad Hidalgo	7.11	0.70	4.51	1.14	0.02	69.04	0.01
TOTAL		37.42	234.60	77.16	1.43	4857.94	0.96

Las emisiones de CO₂ representan el 93.88% de las emisiones emitidas en el corredor.

El tramo carretero que mayores emisiones generó de CO₂ en el corredor es la carretera Tapanatepec-Talismán, con una participación de 1,136.97 toneladas diarias. Esto representa el 23.4% del total de emisiones emitidas en el corredor. Los tramos que le siguen en generación de emisiones son la carretera Puebla-Acatzingo, Cuacnopalan-Oaxaca y Oaxaca-Tehuantepec.

3.2.8 Corredor México-Puebla-Progreso

La tabla 3.31 muestra el total de emisiones por tipo de contaminante, donde el dióxido de carbono representa 10,614.97 toneladas diarias o 3.8 megatoneladas anuales emitidas, convirtiéndose en el mayor gas emitido; le sigue el monóxido de carbono con 322.33 toneladas diarias.

Tabla 3.31 Toneladas diarias por tipo de emisión, corredor México-Puebla-Progreso

1.1091000								
Carretera	Clave ID	НС	СО	NOx	PM	CO ₂	SO ₂	
México-Puebla	8.01	9.29	68.69	27.11	0.66	2015.14	0.31	
Puebla-Acatzingo	8.02	3.86	25.61	15.81	0.36	1102.98	0.19	
Acatzingo-Cd. Mendoza	8.03	3.13	20.90	12.91	0.33	927.66	0.16	
Libramiento de Córdoba	8.04	0.45	3.28	1.55	0.05	123.12	0.02	
Córdoba-Veracruz	8.05	1.51	9.88	6.82	0.17	484.85	0.08	
La Tinaja-Cosoleacaque	8.06	4.19	26.46	21.36	0.53	1521.26	0.27	
Nuevo Teapa-Cosoleacaque	8.07	1.21	8.39	4.50	0.11	318.60	0.05	
Coatzacoalcos-Villahermosa	8.08	10.28	75.06	28.66	0.58	1991.45	0.30	
Villahermosa-Cd. del Carmen	8.09	2.70	20.24	7.16	0.15	530.70	0.08	
Cd. del Carmen-Campeche	8.10	2.64	19.69	7.03	0.15	522.85	0.08	
Libramiento de Campeche	8.11	0.25	1.83	0.70	0.01	49.82	0.01	
Campeche-Mérida	8.12	4.23	30.82	11.76	0.23	813.52	0.12	
Mérida-Progreso	8.13	1.48	11.47	2.95	0.05	213.02	0.03	
TOTAL		45.22	322.33	148.32	3.38	10614.97	1.70	

Las emisiones de CO₂ representan el 95.66% de las emisiones emitidas en el corredor.

El tramo carretero que mayores emisiones generó de CO₂ en el corredor es la carretera México-Puebla, con una participación de 1,136.97 toneladas diarias. Esto representa el 18.98% del total de emisiones emitidas en el corredor. Los tramos que le siguen en generación de emisiones son la carretera Coatzacoalcos-Villahermosa, La Tinaja-Cosoleacaque y Puebla-Acatzingo.

3.2.9 Corredor Peninsular de Yucatán

La tabla 3.32 muestra el total de emisiones por tipo de contaminante, donde el dióxido de carbono representa 3,611.34 toneladas diarias o 1.3 megatoneladas anuales emitidas, convirtiéndose en el mayor gas emitido; le sigue el monóxido de carbono con 171.93 toneladas diarias.

Tabla 3.32 Toneladas diarias por tipo de emisión, corredor Peninsular de Yucatán

Carretera	Clave ID	НС	СО	NOx	PM	CO ₂	SO ₂
Villahermosa-Francisco Escárcega	9.01	3.81	27.31	11.51	0.25	817.44	0.13
Francisco Escárcega-Chetumal	9.02	1.46	10.48	4.01	0.08	288.10	0.04
Reforma Agraria-Puerto Juárez	9.03	15.06	115.52	28.88	0.49	2067.44	0.26
Mérida-Cancún	9.04	1.54	11.23	4.15	0.08	286.09	0.04
Mérida-Puerto Juárez	9.05	0.97	7.38	2.09	0.04	152.27	0.02
TOTAL		22.84	171.93	50.63	0.94	3611.34	0.50

Las emisiones de CO₂ representan el 94.12% de las emisiones emitidas en el corredor.

El tramo carretero que mayores emisiones generó de CO₂ en el corredor es la carretera Reforma Agraria-Puerto Juárez, con una participación de 1,136.97 toneladas diarias. Esto representa el 57.24% del total de emisiones emitidas en el corredor. Los tramos que le siguen en generación de emisiones son la carretera Villahermosa-Francisco Escárcega, Francisco Escárcega-Chetumal y Mérida-Cancún.

3.2.10 Corredor del Pacífico

La tabla 3.33 muestra el total de emisiones por tipo de contaminante, donde el dióxido de carbono representa 3,930.53 toneladas diarias o 1.4 megatoneladas anuales emitidas, convirtiéndose en el mayor gas emitido; le sigue el monóxido de carbono con 181.31 toneladas diarias.

Tabla 3.33 Toneladas diarias por tipo de emisión, corredor del Pacífico

Carretera	Clave ID	НС	СО	NOx	PM	CO ₂	SO ₂
Tepic-Ixtapan de La Concepción	10.01	0.47	3.74	0.84	0.01	64.45	0.01
Ixtapan de La Concepción	10.02	0.10	0.79	0.21	0.00	16.23	0.00
Tepic-Puerto Vallarta	10.03	3.57	27.03	7.66	0.15	550.57	0.07
Manzanillo-Puerto Vallarta	10.04	3.11	24.20	6.59	0.14	514.36	0.07
Libramiento de Manzanillo Norte	10.05	0.28	2.12	0.68	0.02	51.66	0.01
Armería-Manzanillo	10.06	1.87	14.15	4.25	0.08	300.65	0.04
Playa Azul-Manzanillo	10.07	2.16	15.58	6.79	0.16	490.77	0.08
Zihuatanejo-La Mira	10.08	1.65	12.87	3.38	0.07	257.88	0.03
Acapulco-Zihuatanejo	10.09	3.48	26.77	7.56	0.16	565.36	0.08
Las Cruces-Pinotepa Nacional	10.10	3.97	31.26	7.70	0.15	612.72	0.08
Santiago Pinotepa Nacional-Salina Cruz	10.11	2.96	22.80	6.66	0.14	505.87	0.07
TOTAL		23.61	181.31	52.31	1.09	3930.53	0.55

Las emisiones de CO₂ representan el 94.31% de las emisiones emitidas en el corredor.

El tramo carretero que mayores emisiones generó de CO₂ en el corredor, es la carretera Las Cruces-Pinotepa Nacional, con una participación de 1,136.97 toneladas diarias. Esto representa el 15.59% del total de emisiones emitidas en el corredor. Los tramos que le siguen en generación de emisiones son la carretera Acapulco-Zihuatanejo, Tepic-Puerto Vallarta y Manzanillo-Puerto Vallarta.

3.2.11 Corredor Mazatlán-Matamoros

La tabla 3.34 muestra el total de emisiones por tipo de contaminante, donde el dióxido de carbono representa 5,931.7 toneladas diarias o 2.16 megatoneladas anuales emitidas, convirtiéndose en el mayor gas emitido;, le sigue el monóxido de carbono con 150.09 toneladas diarias.

Tabla 3.34 Toneladas diarias por tipo de emisión, corredor Mazatlán-Matamoros

Carretera	Clave ID	НС	СО	NOx	PM	CO ₂	SO ₂
Durango-Mazatlán	11.01	1.18	8.62	3.14	0.07	237.22	0.04
Libramiento de Durango	11.02	0.08	0.59	0.28	0.01	20.03	0.00
Durango-Yerbanís	11.03	2.12	15.08	7.08	0.16	519.80	0.08
Saltillo-Torreón	11.04	9.46	62.57	39.58	0.84	2758.69	0.47
Libramiento Norponiente de Saltillo	11.05	0.30	1.37	2.62	0.06	184.76	0.03
Saltillo – Monterrey libre	11.06	1.72	9.71	9.31	0.23	635.43	0.11
Saltillo – Monterrey cuota	11.07	0.54	3.31	2.68	0.06	182.77	0.03
Monterrey-Reynosa	11.08	3.74	26.15	12.67	0.27	885.84	0.14

TOTAL		22.10	150.09	83.68	1.84	5931.70	0.98
Matamoros – Reynosa	11.10	1.41	10.77	3.17	0.07	247.71	0.03
Libramiento de Reynosa	11.09	1.54	11.92	3.15	0.07	259.46	0.04

Las emisiones de CO₂ representan el 95.82% de las emisiones emitidas en el corredor.

El tramo carretero que mayores emisiones generó de CO₂ en el corredor es la carretera Saltillo-Torreón, con una participación de 2,758.69 toneladas diarias. Esto representa el 46.5% del total de emisiones emitidas en el corredor. Los tramos que le siguen en generación de emisiones son la carretera Monterrey-Reynosa, Durango-Yerbanís y Saltillo-Monterrey libre.

3.2.12 Corredor Transpeninsular de Baja California

La tabla 3.35 muestra el total de emisiones por tipo de contaminante, donde el dióxido de carbono representa 3,573.19 toneladas diarias o 1.3 megatoneladas anuales emitidas, convirtiéndose en el mayor gas emitido; le sigue el monóxido de carbono con 153.13 toneladas diarias.

Tabla 3.35 Toneladas diarias por tipo de emisión, corredor Transpeninsular de Baja California

Carretera	Clave ID	НС	СО	NOx	PM	CO ₂	SO ₂
Tijuana-Ensenada	12.01	2.46	18.66	5.09	0.08	348.52	0.05
Ensenada-Lázaro Cárdenas	12.02	4.55	32.85	10.68	0.28	877.92	0.13
Lázaro Cárdenas-Ent. Punta Prieta	12.03	1.60	11.05	5.66	0.13	400.73	0.07
Ent. Punta Prieta-Guerrero Negro	12.04	0.25	1.48	1.26	0.03	88.44	0.02
Santa Rosalía-Guerrero Negro	12.05	0.70	4.82	2.45	0.06	179.70	0.03
Loreto-Santa Rosalía	12.06	1.04	7.98	2.25	0.05	182.00	0.03
Cd. Insurgentes-Loreto	12.07	0.41	2.93	1.17	0.03	86.04	0.01
La Paz-Cd. Insurgentes	12.08	2.13	15.70	5.58	0.11	394.65	0.06
Cabo San Lucas-La Paz	12.09	5.26	40.46	9.85	0.15	679.51	0.08
San Pedro-Cabo San Lucas	12.10	2.28	17.20	4.95	0.08	335.68	0.04
TOTAL		20.69	153.13	48.95	1.00	3573.19	0.51

Las emisiones de CO₂ representan el 94.55% de las emisiones emitidas en el corredor.

El tramo carretero que mayores emisiones generó de CO₂ en el corredor es la carretera Ensenada-Lázaro Cárdenas, con una participación de 877.92 toneladas

diarias. Esto representa el 24.56% del total de emisiones emitidas en el corredor. Los tramos que le siguen en generación de emisiones son la carretera Cabo San Lucas-La Paz, Lázaro Cárdenas-Ent. Punta Prieta y La Paz-Cd. Insurgentes.

3.2.13 Corredor del Altiplano

La tabla 3.36 muestra el total de emisiones por tipo de contaminante, donde el dióxido de carbono representa 4,297.10 toneladas diarias o 1.56 megatoneladas anuales emitidas, convirtiéndose en el mayor gas emitido, le sigue el monóxido de carbono con 154.69 toneladas diarias.

Tabla 3.36 Toneladas diarias por tipo de emisión, corredor del Altiplano

Carretera	Clave ID	НС	СО	NOx	PM	CO ₂	SO ₂
Toluca-Palmillas	13.01	0.70	5.36	1.56	0.03	114.02	0.02
Libramiento Norte de la Ciudad de México	13.02	6.17	47.39	11.23	0.14	750.94	0.09
México-Puebla	13.03	3.68	26.08	12.38	0.28	881.08	0.14
Puebla-Acatzingo	13.04	5.84	40.05	21.06	0.45	1476.93	0.24
Amozoc-Perote	13.05	1.49	11.19	3.42	0.07	238.29	0.03
Libramiento Perote	13.06	0.04	0.20	0.30	0.01	21.53	0.00
San Hipólito-Xalapa	13.07	3.39	24.41	10.90	0.27	814.30	0.13
TOTAL		21.30	154.69	60.85	1.25	4297.10	0.66

Las emisiones de CO₂ representan el 95.14% de las emisiones emitidas en el corredor.

El tramo carretero que mayores emisiones generó de CO_2 en el corredor es la carretera Puebla-Acatzingo, con una participación de 1,476.93 toneladas diarias. Esto representa el 34.37% del total de emisiones emitidas en el corredor. Los tramos que le siguen en generación de emisiones son la carretera México-Puebla, San Hipólito-Xalapa y Libramiento Norte de la Ciudad de México.

3.2.14 Corredor Acapulco-Tuxpan

La tabla 3.37 muestra el total de emisiones por tipo de contaminante, donde el dióxido de carbono representa 6634.86 toneladas diarias o 2.4 megatoneladas anuales emitidas, convirtiéndose en el mayor gas emitido; le sigue el monóxido de carbono con 235.96 toneladas diarias.

Tabla 3.37 Toneladas diarias por tipo de emisión, corredor Acapulco-Tuxpan

	Carretera	Clave ID	HC	CO	NOx	PM	CO ₂	SO ₂	
--	-----------	----------	----	----	-----	----	-----------------	-----------------	--

Cuernavaca-Acapulco	14.01	6.55	52.79	9.82	0.27	1060.13	0.14
Libramiento de Cuernavaca	14.02	2.88	22.28	5.34	0.10	400.01	0.05
México-Cuernavaca	14.03	1.76	13.73	3.23	0.04	231.49	0.03
La Pera-Cuautla	14.04	1.70	13.03	3.31	0.05	222.75	0.03
Santa Bárbara-Izúcar de Matamoros	14.05	1.28	9.52	3.07	0.05	209.57	0.03
Atlixco-Jantetelco	14.06	0.62	4.98	0.96	0.03	103.85	0.01
Puebla-Atlixco	14.07	1.18	10.13	1.19	0.03	167.54	0.02
Puebla-Acatzingo	14.08	3.86	25.55	15.54	0.35	1079.80	0.18
Acatzingo-Cd. Mendoza	14.09	3.13	20.78	12.47	0.31	889.03	0.15
Libramiento de Córdoba	14.10	2.43	17.24	7.39	0.21	579.15	0.09
Córdoba-Veracruz	14.11	2.58	17.52	10.10	0.23	713.74	0.12
Poza Rica-Veracruz	14.12	3.12	21.75	10.61	0.27	781.83	0.13
Gutiérrez Zamora-Tihuatlán	14.13	0.32	2.18	1.26	0.03	89.24	0.01
Tihuatlán-Tuxpan	14.14	0.60	4.48	1.35	0.03	106.70	0.02
TOTAL		32.01	235.96	85.64	2.00	6634.86	1.01

Las emisiones de CO₂ representan el 95.28% de las emisiones emitidas en el corredor.

El tramo carretero que mayores emisiones generó de CO₂ en el corredor, es la carretera Puebla-Acatzingo con una participación de 1,079.80 toneladas diarias. Esto representa el 16.27% del total de emisiones emitidas en el corredor. Los tramos que le siguen en generación de emisiones son la carretera Cuernavaca-Acapulco, Acatzingo-Cd. Mendoza y Poza Rica-Veracruz.

3.2.15 Corredor Acapulco-Veracruz

La tabla 3.38 muestra el total de emisiones por tipo de contaminante, donde el dióxido de carbono representa 5,657.08 toneladas diarias o 2.06 megatoneladas anuales emitidas, convirtiéndose en el mayor gas emitido; le sigue el monóxido de carbono con 207.55 toneladas diarias.

Tabla 3.38 Toneladas diarias por tipo de emisión, corredor Acapulco-Veracruz

Carretera	Clave ID	НС	СО	NOx	PM	CO ₂	SO ₂
Cuernavaca-Acapulco	15.01	6.55	52.79	9.82	0.27	1060.13	0.14
Libramiento de Cuernavaca	15.02	2.88	22.28	5.34	0.10	400.01	0.05
México-Cuernavaca	15.03	1.76	13.73	3.23	0.04	231.49	0.03
La Pera-Cuautla	15.04	1.70	13.03	3.31	0.05	222.75	0.03
Santa Bárbara-Izúcar de Matamoros	15.05	1.28	9.52	3.07	0.05	209.57	0.03
Atlixco-Jantetelco	15.06	0.62	4.98	0.96	0.03	103.85	0.01
Puebla-Atlixco	15.07	1.18	10.13	1.19	0.03	167.54	0.02

Puebla-Acatzingo	15.08	3.86	25.55	15.54	0.35	1079.80	0.18
Acatzingo-Cd. Mendoza	15.09	3.13	20.78	12.47	0.31	889.03	0.15
Libramiento de Córdoba	15.10	2.43	17.24	7.39	0.21	579.15	0.09
Córdoba-Veracruz	15.11	2.58	17.52	10.10	0.23	713.74	0.12
TOTAL		27.97	207.55	72.42	1.68	5657.08	0.85

Las emisiones de CO₂ representan el 95.19% de las emisiones emitidas en el corredor.

El tramo carretero que mayores emisiones generó de CO₂ en el corredor es la carretera Puebla-Acatzingo, con una participación de 1,079.80 toneladas diarias. Esto representa el 19.08% del total de emisiones emitidas en el corredor. Los tramos que le siguen en generación de emisiones son la carretera Cuernavaca-Acapulco, Acatzingo-Cd. Mendoza y Córdoba-Veracruz.

3.2.16 Corredor Circuito Transístmico

La tabla 3.39 muestra el total de emisiones por tipo de contaminante, donde el dióxido de carbono representa 2,990.42 toneladas diarias o 1.09 megatoneladas anuales emitidas, convirtiéndose en el mayor gas emitido; le sigue el monóxido de carbono con 89.16 toneladas diarias.

Tabla 3.39 Toneladas diarias por tipo de emisión, corredor Circuito Transístmico

Carretera	Clave ID	НС	СО	NOx	PM	CO ₂	SO ₂
Coatzacoalcos-Salina Cruz	16.01	0.88	6.32	2.48	0.06	192.54	0.03
Ent. La Ventosa-San Pedro Tanapatepec	16.02	0.84	5.87	3.00	0.07	216.82	0.04
Tapanatepec-Talismán	16.03	0.54	3.82	1.75	0.04	125.44	0.02
Arriaga-Ocozocoautla	16.04	0.84	6.49	1.83	0.04	136.87	0.02
Las Choapas-Ocozocoautla	16.05	1.75	11.72	7.54	0.19	554.74	0.10
Coatzacoalcos-Salina Cruz	16.06	7.68	54.95	24.36	0.55	1764.01	0.28
TOTAL		12.52	89.16	40.95	0.94	2990.42	0.48

Las emisiones de CO₂ representan el 95.73% de las emisiones emitidas en el corredor.

El tramo carretero que mayores emisiones generó de CO₂ en el corredor es la carretera Coatzacoalcos-Salina Cruz, con una participación de 1764.01 toneladas diarias. Esto representa el 58.99% del total de emisiones emitidas en el corredor. Los tramos que le siguen en generación de emisiones son la carretera Las Choapas-Ocozocoautla, Ent. La Ventosa-San Pedro Tanapatepec y Coatzacoalcos-Salina Cruz.

Canatrucción do la línea hace do emigianos do CO, del transporte do cargo en Máxico	
Construcción de la línea base de emisiones de CO ₂ del transporte de carga en México	

3.3 Emisiones de los vehículos del transporte de carga en los corredores de transporte en México

De las emisiones totales emitidas fue necesario extraer únicamente aquellas generadas por los vehículos para el transporte de carga. Los vehículos utilizados para la carga y que circulan mayormente en las carreteras en México se muestran en la tabla 3.40. Estos vehículos son los representativos para el inventario de emisiones para los vehículos de carga o mercancías.

Tabla 3.40 Clasificación de los vehículos pesados en México

Tipo de vehículo	Clasificación del vehículo
Camión mediano	C2
Camión pesado	C3
Camión articulado	T3-S2
Camión articulado	T3-S3
Camión articulado	T3-S2-R4

Fuente: Datos Viales 2013, SCT

En este apartado se mostrarán los resultados de dicho inventario, correspondientes a las emisiones producidas por la operación en carreteras de los vehículos de carga.

3.3.1 Corredor México-Nuevo Laredo

Los resultados se pueden observar en la tabla 3.41, donde los vehículos de carga emiten un total de 11,562.65 toneladas diarias de CO₂. Esta cantidad de emisiones de CO₂ del transporte de carga representa un 75.17% del total de emisiones del corredor. Por ello, se pone de manifiesto que el mayor generador de emisiones del transporte en el corredor México-Nuevo Laredo son los vehículos destinados al transporte de carga.

De acuerdo con los resultados mostrados en la tabla 3.41, la carretera con mayores emisiones de CO₂, producto de la operación del transporte de carga es la México-Querétaro, dentro del corredor.

El porcentaje que representan las emisiones de CO₂ de los vehículos de carga con respecto al total de vehículos equivale a 75.17%. En cuanto al resto de las emisiones contaminantes, los vehículos de carga son también los mayores emisores, excepto para el monóxido de carbono e hidrocarburos, donde la mayor participación en la generación de emisiones son los vehículos ligeros.

Tabla 3.41 Toneladas diarias emitidas por vehículos de carga, corredor México-Nuevo Laredo

Carretera	Clave ID	нс	со	NOx	PM	CO ₂	SO ₂
México-Querétaro	1.01	3.44	3.14	35.62	1.04	2292.02	0.45
Libramiento Norponiente de Querétaro	1.02	0.73	0.21	6.85	0.20	362.35	0.07
Querétaro-San Luis Potosí	1.03	1.49	1.48	23.17	0.63	1643.88	0.32
Libramiento Oriente de San Luis Potosí	1.04	0.33	0.15	4.66	0.12	304.26	0.06
San Luis Potosí-Matehuala	1.05	1.79	1.02	21.76	0.60	1375.28	0.27
Libramiento de Matehuala	1.06	0.09	0.06	1.45	0.04	100.21	0.02
Matehuala-Ent. Puerto México	1.07	2.54	1.37	28.77	0.81	1768.64	0.35
Puerto México-La Carbonera	1.08	0.39	0.23	5.91	0.15	400.66	0.08
Libramiento Oriente de Saltillo	1.09	0.14	0.09	2.33	0.06	163.29	0.03
Saltillo-Monterrey	1.10	0.57	0.42	7.55	0.21	501.94	0.10
Saltillo-Monterrey (cuota)	1.11	0.12	0.08	1.99	0.05	138.62	0.03
Libramiento Noroeste de Monterrey	1.12	0.59	0.41	7.79	0.21	515.55	0.10
Anillo Periférico de Monterrey	1.13	0.09	0.09	1.15	0.03	77.63	0.02
Monterrey-Nuevo Laredo	1.14	0.64	0.49	7.85	0.22	512.39	0.10
Monterrey-Nuevo Laredo	1.15	1.05	0.65	17.68	0.45	1240.09	0.24
Libramiento de Nuevo Laredo II	1.16	0.23	0.13	2.67	0.08	165.86	0.03
TOTAL		14.22	10.02	177.20	4.90	11562.65	2.28

3.3.1.1 Ramal a Piedras Negras

La tabla 3.42 muestra los resultados del ramal, donde los vehículos de carga emiten un total de 683.30 toneladas diarias de CO₂. Esta cantidad de emisiones de CO₂ del transporte de carga representa un 58.18% del total de emisiones del corredor. Por ello, se pone de manifiesto que el mayor generador de emisiones del transporte en el ramal son los vehículos destinados al transporte de carga.

Tabla 3.42 Toneladas diarias emitidas por vehículos de carga, Ramal Piedras Negras

			_				
Carretera	Clave ID	НС	со	NOx	PM	CO ₂	SO ₂
Ojo Caliente-Santa Cruz	4.05.01	0.06	0.10	0.76	0.02	55.95	0.01
Saltillo-Monclova	4.05.02	0.25	0.22	2.38	0.07	145.88	0.03
Monclova-Piedras Negras	4.05.03	0.53	0.83	6.73	0.21	481.47	0.09
TOTAL		0.84	1.15	9.88	0.31	683.30	0.13

3.3.2 Corredor México-Cd. Juárez

Los resultados se pueden observar en la tabla 3.43, donde los vehículos de carga emiten un total de 9,261.34 toneladas diarias de CO₂. Esta cantidad de emisiones de CO₂ del transporte de carga representa un 61.79% del total de emisiones del corredor. Por ello, se pone de manifiesto que el mayor generador de emisiones del transporte en el corredor son los vehículos destinados al transporte de carga.

Tabla 3.43 Toneladas diarias emitidas por vehículos de carga, corredor México-Ciudad Juárez

Carretera	Clave	НС	со	NOx	PM	CO ₂	SO ₂
México-Querétaro	2.01	4.42	4.50	43.53	1.32	2789.86	0.55
Querétaro-Irapuato Libre	2.02	0.91	1.40	11.88	0.38	842.90	0.17
Querétaro-Irapuato Cuota	2.03	0.72	1.12	11.27	0.34	819.98	0.16
Nuevo Libramiento de Irapuato	2.04	0.13	0.15	1.29	0.04	82.91	0.02
Irapuato-León	2.05	0.61	1.07	8.16	0.27	589.77	0.12
León-Aguascalientes Libre	2.06	0.10	0.18	1.32	0.04	95.71	0.02
León-Aguascalientes Cuota	2.07	0.29	0.41	4.43	0.13	320.22	0.06
Aguascalientes-Zacatecas	2.08	0.16	0.22	1.84	0.06	126.77	0.02
Libramiento Rincón de Romos	2.09	0.04	0.04	0.48	0.01	33.29	0.01
Libramiento Noroeste de Zacatecas	2.10	0.05	0.05	0.74	0.02	52.14	0.01
Guadalupe-Cosío	2.11	0.01	0.01	0.07	0.00	5.00	0.00
Cuauhtémoc-Osiris	2.12	0.07	0.08	1.07	0.03	76.09	0.02
Zacatecas-Durango	2.13	0.14	0.20	1.93	0.06	138.06	0.03
Libramiento de Víctor Rosales	2.14	0.04	0.05	0.61	0.02	43.90	0.01
Libramiento de Fresnillo	2.15	0.04	0.04	0.62	0.02	44.26	0.01
La chicharrona-Cuencamé	2.16	0.58	0.51	8.12	0.23	550.16	0.11
Yerbanís-Gómez Palacio	2.17	0.10	0.12	1.66	0.05	119.18	0.02
Gómez Palacio-Jiménez	2.18	0.58	0.39	7.28	0.21	465.68	0.09
Gómez Palacio-Coralitos	2.19	0.24	0.15	4.14	0.10	290.97	0.06
Libramiento de Jiménez	2.20	0.02	0.01	0.17	0.00	10.34	0.00
Jiménez-Camargo	2.21	0.18	0.17	3.01	0.08	213.46	0.04
Camargo-Delicias	2.22	0.20	0.22	3.23	0.09	230.36	0.05
Libramiento Delicias-Meoqui	2.23	0.06	0.07	0.75	0.02	51.40	0.01
Delicias-Chihuahua	2.24	0.37	0.47	5.22	0.15	367.81	0.07
Chihuahua-Sacramento	2.25	0.03	0.05	0.41	0.01	29.28	0.01
Chihuahua-El Sueco	2.26	0.39	0.40	5.62	0.16	390.11	0.08
El Sueco-Villa Ahumada	2.27	0.14	0.15	2.24	0.06	159.79	0.03
Villa Ahumada-Cd. Juárez	2.28	0.33	0.41	4.59	0.14	321.96	0.06
TOTAL		10.95	12.64	135.65	4.05	9261.34	1.83

De acuerdo con los resultados mostrados en la tabla 3.43, la carretera con mayores emisiones de CO₂ producto de la operación del transporte de carga es la México-Querétaro, dentro del corredor.

3.3.3 Corredor México-Nogales

Los resultados se pueden observar en la tabla 3.44, donde los vehículos de carga emiten un total de 7819.74 toneladas diarias de CO₂. Esta cantidad de emisiones de CO₂ del transporte de carga representa un 58.27% del total de emisiones del corredor. Por lo que se pone de manifiesto que el mayor generador de emisiones del transporte en el corredor son los vehículos destinados al transporte de carga.

Tabla 3.44 Toneladas diarias emitidas por vehículos de carga, corredor México- Nogales

Carretera	Clave	НС	СО	NOx	PM	CO ₂	SO ₂
México-Toluca Libre	3.01	0.37	0.50	3.64	0.11	248.12	0.05
México-Toluca Cuota	3.02	0.09	0.19	1.16	0.04	86.36	0.02
Libramiento Toluca	3.03	0.23	0.39	2.62	0.09	189.02	0.04
Toluca-Palmillas	3.04	0.34	0.53	4.10	0.13	292.91	0.06
Atlacomulco-Maravatío	3.05	0.11	0.16	1.50	0.05	108.79	0.02
Maravatío-Zapotlanejo	3.06	0.58	0.73	8.60	0.25	617.17	0.12
Zapotlanejo-Guadalajara	3.07	0.08	0.10	1.21	0.03	86.80	0.02
Zona Urbana Guadalajara	3.08	0.51	0.63	6.16	0.19	422.37	0.08
Guadalajara-Tepic	3.09	0.14	0.16	1.30	0.04	83.09	0.02
Guadalajara-Tepic Cuota	3.10	0.56	0.61	8.06	0.23	566.11	0.11
Libramiento de Tepic	3.11	0.17	0.20	1.57	0.05	102.87	0.02
Tepic-Mazatlán	3.12	0.72	0.76	8.20	0.25	543.21	0.11
Tepic-Villa Unión	3.13	0.39	0.42	6.15	0.17	439.86	0.09
Libramiento de Mazatlán	3.14	0.05	0.06	0.45	0.01	29.60	0.01
Mazatlán-Culiacán	3.15	0.49	0.48	7.92	0.21	564.59	0.11
Culiacán-Las Brisas	3.16	0.25	0.35	3.64	0.11	264.67	0.05
Culiacán-Los Mochis	3.17	0.41	0.50	5.58	0.16	390.50	0.08
Est. Don-Nogales	3.18	2.59	2.57	38.26	1.05	2682.49	0.53
Libramiento de Empalme	3.19	0.05	0.06	0.75	0.02	54.41	0.01
Libramiento de Magdalena de Kino	3.20	0.02	0.02	0.30	0.01	21.63	0.00
Libramiento de Nogales	3.21	0.04	0.01	0.43	0.01	25.17	0.00
TOTAL		8.17	9.43	111.59	3.21	7819.74	1.54

De acuerdo con los resultados mostrados en la tabla 3.44, la carretera con mayores emisiones de CO₂, producto de la operación del transporte de carga es la Est. Don-Nogales, dentro del corredor.

3.3.3.1 Ramal a Tijuana

La tabla 3.45 muestra los resultados del ramal, donde los vehículos de carga emiten un total de 1,492.05 toneladas diarias de CO₂. Esta cantidad de emisiones de CO₂ del transporte de carga representa un 63.81% del total de emisiones del corredor. Por ello, se pone de manifiesto que el mayor generador de emisiones del transporte en el ramal son los vehículos destinados al transporte de carga.

Tabla 3.45 Toneladas diarias emitidas por vehículos de carga, Ramal a Tijuana

	,	uaii	<u> </u>				
Carretera	Clave ID	нс	со	NOx	PM	CO ₂	SO ₂
Santa Ana-Sonoita	3.05.01	0.63	0.63	8.94	0.25	620.45	0.12
Sonoita-Mexicali	3.05.02	0.70	0.62	8.35	0.24	547.33	0.11
Libramiento de Mexicali	3.05.03	0.06	0.04	0.85	0.02	58.44	0.01
El Centinela-La Rumorosa	3.05.04	0.13	0.13	1.76	0.05	121.77	0.02
La Rumorosa-Tecate	3.05.05	0.03	0.03	0.52	0.01	37.02	0.01
Libramiento de Tecate	3.05.06	0.08	0.08	1.29	0.03	91.54	0.02
Tecate-Tijuana	3.05.07	0.02	0.02	0.22	0.01	15.51	0.00
TOTAL		1.65	1.54	21.92	0.62	1492.05	0.29

3.3.4 Corredor Manzanillo-Tampico

Los resultados se pueden observar en la tabla 3.46, donde los vehículos de carga emiten un total de 5,763.98 toneladas diarias de CO_2 . Esta cantidad de emisiones de CO_2 del transporte de carga representa un 64.35% del total de emisiones del corredor. Por ello, se pone de manifiesto que el mayor generador de emisiones del transporte en el corredor son los vehículos destinados al transporte de carga.

Tabla 3.46 Toneladas diarias emitidas por vehículos de carga, corredor Manzanillo-Tampico

Carretera	Clave ID	НС	СО	NOx	PM	CO ₂	SO ₂
Armería-Manzanillo Cuota	4.01	0.09	0.11	1.53	0.04	110.08	0.02
Colima-Ent. Tecomán	4.02	0.29	0.36	3.38	0.10	230.94	0.05
Libramiento Colima	4.03	0.04	0.05	0.52	0.02	35.33	0.01
Cd. Guzmán-Colima	4.04	0.02	0.03	0.32	0.01	23.64	0.00
Guadalajara-Colima Cuota	4.05	0.51	0.72	7.86	0.23	566.76	0.11
Jiquilpan-Guadalajara	4.06	0.16	0.18	1.93	0.06	130.77	0.03
Zapotlanejo-Guadalajara (Cuota)	4.07	0.24	0.38	3.75	0.11	273.47	0.05
Lagos de Moreno-Guadalajara	4.08	1.25	1.95	15.48	0.50	1089.48	0.21
Zapotlanejo-Lagos de Moreno (Cuota)	4.09	0.50	0.57	8.14	0.23	583.30	0.12
San Luis Potosí-Lagos de Moreno	4.10	0.39	0.42	4.78	0.14	321.36	0.06
Lagos de Moreno-Villa de Arriaga	4.11	0.25	0.09	2.38	0.07	125.57	0.02
Libramiento Villa de Arriaga	4.12	0.01	0.01	80.0	0.00	6.17	0.00

San Luis Potosí-Villa de Arriaga (Cuota)	4.13	0.27	0.28	4.38	0.12	313.23	0.06
Cd. Valles-San Luis Potosí	4.14	0.03	0.06	0.32	0.01	22.81	0.00
Libramiento Oriente de San Luis Potosí (Cuota)	4.15	0.33	0.17	4.73	0.13	310.26	0.06
San Luis Potosí-Matehuala	4.16	1.15	0.93	16.35	0.45	1109.04	0.22
Cerritos-Rioverde (Cuota)	4.17	0.09	0.15	1.36	0.04	99.24	0.02
Cd. Valles-San Luis Potosí	4.18	0.08	0.15	1.05	0.04	75.78	0.01
Libramiento de Cd. Valles	4.19	0.02	0.03	0.24	0.01	17.09	0.00
Cd. Valles-Tampico	4.20	0.34	0.62	4.41	0.15	319.63	0.06
TOTAL		6.06	7.27	82.99	2.47	5763.98	1.14

De acuerdo con los resultados mostrados en la tabla 3.46, la carretera con mayores emisiones de CO₂, producto de la operación del transporte de carga es la San Luis Potosí-Matehuala, dentro del corredor.

3.3.4.1 Ramal a Lázaro Cárdenas

La tabla 3.47 muestra los resultados del ramal, donde los vehículos de carga emiten un total de 1,931.41 toneladas diarias de CO₂. Esta cantidad de emisiones de CO₂ del transporte de carga representa un 48.68% del total de emisiones del corredor. Por ello, se pone de manifiesto que el mayor generador de emisiones del transporte en el ramal son los vehículos destinados al transporte de carga.

Tabla 3.47 Toneladas diarias emitidas por vehículos de carga, Ramal a Lázaro Cárdenas

Carretera	Clave ID	НС	СО	NOx	PM	CO ₂	SO ₂
León-Aguascalientes (Cuota)	4.06.01	0.19	0.28	2.84	0.09	205.70	0.04
Irapuato-León	4.06.02	0.90	1.36	10.59	0.34	741.57	0.15
Nuevo Libramiento de Irapuato	4.06.03	0.17	0.19	1.57	0.05	99.87	0.02
Querétaro-Irapuato (Cuota)	4.06.04	0.15	0.22	2.38	0.07	172.37	0.03
Morelia-Salamanca (Cuota)	4.06.05	0.08	0.09	1.23	0.03	88.48	0.02
Morelia-Salamanca	4.06.06	0.17	0.31	1.88	0.06	135.88	0.03
Morelia-Pátzcuaro	4.06.07	0.17	0.31	2.39	0.08	175.99	0.03
Pátzcuaro-Uruapan (Cuota)	4.06.08	0.07	0.10	1.13	0.03	81.45	0.02
Uruapan-Nueva Italia (Cuota)	4.06.09	0.08	0.10	1.17	0.03	83.85	0.02
Nueva Italia-Lázaro Cárdenas (Cuota)	4.06.10	0.12	0.21	1.98	0.06	146.23	0.03
TOTAL		2.10	3.17	27.15	0.85	1931.41	0.38

3.3.5 Corredor México-Veracruz

Los resultados se pueden observar en la tabla 3.48, donde los vehículos de carga emiten un total de 2,851.22 toneladas diarias de CO₂. Esta cantidad de emisiones

de CO₂ del transporte de carga representa un 56.29% del total de emisiones del corredor. Por ello, se pone de manifiesto que el mayor generador de emisiones del transporte en el corredor son los vehículos destinados al transporte de carga.

Tabla 3.48 Toneladas diarias emitidas por vehículos de carga, corredor México-Veracruz

Carretera	Clave	НС	СО	NOx	PM	CO ₂	SO ₂
México-Puebla Cuota	5.01	1.06	1.82	14.30	0.46	1032.93	0.20
Puebla-Acatzingo Cuota	5.02	0.53	0.70	7.85	0.23	560.11	0.11
Acatzingo-Cd. Mendoza cuota	5.03	0.60	0.75	8.27	0.25	574.83	0.11
Cd. Mendoza-Córdoba Cuota	5.04	0.35	0.39	4.33	0.13	292.09	0.06
Libramiento Córdoba	5.05	0.09	0.10	0.88	0.03	57.19	0.01
Córdoba-Veracruz Cuota	5.06	0.29	0.39	4.61	0.13	334.08	0.07
TOTAL		2.91	4.15	40.24	1.24	2851.22	0.56

De acuerdo con los resultados mostrados en la tabla 3.48, la carretera con mayores emisiones de CO₂, producto de la operación del transporte de carga, es la México-Puebla Cuota, dentro del corredor.

3.3.6 Corredor Veracruz-Monterrey (incluye ramal a Matamoros)

Los resultados se pueden observar en la tabla 3.49, donde los vehículos de carga emiten un total de 3,529.8 toneladas diarias de CO₂. Esta cantidad de emisiones de CO₂ del transporte de carga representa un 66.01% del total de emisiones del corredor. Por ello, se pone de manifiesto que el mayor generador de emisiones del transporte en el corredor son los vehículos destinados al transporte de carga.

Tabla 3.49 Toneladas diarias emitidas por vehículos de carga, corredor Veracruz-Monterrey

Carretera	Clave ID	нс	СО	NOx	PM	CO ₂	SO ₂
Ciudad Victoria-Monterrey	6.01	1.05	1.49	14.30	0.44	1011.23	0.20
Ignacio Zaragoza-Ciudad Victoria	6.02	0.17	0.15	3.01	0.08	214.46	0.04
González-Llera de Canales	6.03	0.12	0.07	1.56	0.04	98.32	0.02
Libramiento Estación Manuel-González	6.04	0.05	0.05	0.85	0.02	59.60	0.01
Tampico-Cd. Mante	6.05	0.19	0.24	3.06	0.09	221.03	0.04
Tuxpan-Tampico	6.06	0.59	0.71	6.84	0.21	461.04	0.09
Tihuatlán-Tuxpan	6.07	0.06	0.11	0.67	0.02	47.94	0.01
Gutiérrez Zamora-Tihuatlán (Cuota)	6.08	0.06	0.08	0.89	0.03	64.33	0.01
Poza Rica-Veracruz	6.09	0.54	0.71	6.78	0.21	467.79	0.09

Cd. Victoria-Matamoros	6.10	0.88	0.93	12.67	0.36	884.06	0.17
TOTAL		3.72	4.55	50.64	1.51	3529.80	0.70

De acuerdo con los resultados mostrados en la tabla 3.49, la carretera con mayores emisiones de CO₂, producto de la operación del transporte de carga es la Ciudad Victoria-Monterrey, dentro del corredor.

3.3.7 Corredor Puebla-Oaxaca-Ciudad Hidalgo

Los resultados se pueden observar en la tabla 3.50, donde los vehículos de carga emiten un total de 2,426.0 toneladas diarias de CO₂. Esta cantidad de emisiones de CO₂ del transporte de carga representa un 49.94% del total de emisiones del corredor. Por ello, se pone de manifiesto que el mayor generador de emisiones del transporte en el corredor son los vehículos destinados al transporte de carga.

De acuerdo con los resultados mostrados en la tabla 3.50, la carretera con mayores emisiones de CO₂ producto de la operación del transporte de carga es la Puebla-Acatzingo, dentro del corredor.

Tabla 3.50 Toneladas diarias emitidas por vehículos de carga, corredor Puebla-Oaxaca-Cd. Hidalgo

Carretera	Clave ID	НС	СО	NOx	PM	CO ₂	SO ₂
Puebla-Acatzingo	7.01	0.53	0.80	8.35	0.25	603.46	0.12
Acatzingo-Cd. Mendoza	7.02	0.34	0.42	4.35	0.14	294.00	0.06
Cuacnopalan-Oaxaca	7.03	0.34	0.84	5.45	0.19	412.56	0.08
Huajuapan de León-Oaxaca	7.04	0.06	0.11	0.53	0.02	37.18	0.01
Oaxaca-Tehuantepec	7.05	0.20	0.35	2.18	0.08	153.81	0.03
Coatzacoalcos-Salina Cruz	7.06	0.14	0.16	1.59	0.05	105.02	0.02
Coatzacoalcos-Salina Cruz	7.07	0.16	0.19	1.72	0.05	113.76	0.02
La Ventosa-San Pedro Tanapatepec	7.08	0.13	0.19	1.99	0.06	143.79	0.03
Tapanatepec-Talismán	7.09	0.45	0.79	7.12	0.22	524.32	0.10
Tapachula-Puerto Madero	7.10	0.02	0.05	0.20	0.01	15.78	0.00
Ent. Jaritas-Ciudad Hidalgo	7.11	0.02	0.03	0.31	0.01	22.31	0.00
TOTAL		2.39	3.93	33.78	1.08	2426.00	0.48

3.3.8 Corredor México-Puebla-Progreso

Los resultados se pueden observar en la tabla 3.51, donde los vehículos de carga emiten un total de 6,583.62 toneladas diarias de CO₂. Esta cantidad de emisiones de CO₂ del transporte de carga representa un 62.02% del total de emisiones del

corredor. Por lo que se pone de manifiesto que el mayor generador de emisiones del transporte en el corredor son los vehículos destinados al transporte de carga.

Tabla 3.51 Toneladas diarias emitidas por vehículos de carga, corredor México-Puebla-Progreso

MIOXI	JO-I UEI	<u> </u>	. 09	.000		1	
Carretera	Clave ID	нс	СО	NOx	PM	CO ₂	SO ₂
México-Puebla	8.01	1.04	2.08	15.55	0.53	1140.43	0.22
Puebla-Acatzingo	8.02	0.68	0.81	10.92	0.31	779.10	0.15
Acatzingo-Cd. Mendoza	8.03	0.60	0.88	9.05	0.28	643.35	0.13
Libramiento de Córdoba	8.04	0.08	0.17	1.11	0.04	78.41	0.02
Córdoba-Veracruz	8.05	0.28	0.37	4.76	0.14	346.51	0.07
La Tinaja-Cosoleacaque	8.06	0.92	1.18	15.86	0.45	1151.56	0.23
Nuevo Teapa-Cosoleacaque	8.07	0.17	0.32	2.92	0.09	215.73	0.04
Coatzacoalcos-Villahermosa	8.08	0.91	1.72	14.72	0.47	1092.62	0.22
Villahermosa-Cd. del Carmen	8.09	0.28	0.50	4.06	0.13	294.27	0.06
Cd. del Carmen-Campeche	8.10	0.27	0.47	3.88	0.12	282.04	0.06
Libramiento de Campeche	8.11	0.02	0.04	0.37	0.01	27.53	0.01
Campeche-Mérida	8.12	0.38	0.67	6.15	0.19	453.97	0.09
Mérida-Progreso	8.13	0.07	0.15	1.06	0.04	78.10	0.02
TOTAL		5.71	9.36	90.41	2.81	6583.62	1.30

De acuerdo con los resultados mostrados en la tabla 3.51, la carretera con mayores emisiones de CO₂ producto de la operación del transporte de carga es La Tinaja-Cosoleacaque, dentro del corredor.

3.3.9 Corredor Peninsular de Yucatán

Los resultados se pueden observar en la tabla 3.52, donde los vehículos de carga emiten un total de 1479.01 toneladas diarias de CO₂. Esta cantidad de emisiones de CO₂ del transporte de carga representa un 40.95% del total de emisiones del corredor. Por lo que se pone de manifiesto que el mayor generador de emisiones del transporte en el corredor son los vehículos destinados al transporte de carga.

Tabla 3.52 Toneladas diarias emitidas por vehículos de carga, corredor Peninsular de Yucatán

Carretera	Clave ID	НС	СО	NOx	PM	CO ₂	SO ₂
Villahermosa-Francisco Escárcega	9.01	0.47	0.77	6.85	0.21	499.21	0.10

Francisco Escárcega-Chetumal	9.02	0.18	0.22	2.27	0.07	157.34	0.03
Reforma Agraria-Puerto Juárez	9.03	0.73	1.44	8.40	0.29	613.14	0.12
Mérida-Cancún	9.04	0.13	0.17	1.97	0.06	143.62	0.03
Mérida-Puerto Juárez	9.05	0.07	0.15	0.90	0.03	65.71	0.01
TOTAL		1.58	2.75	20.40	0.66	1479.01	0.29

De acuerdo con los resultados mostrados en la tabla 3.52, la carretera con mayores emisiones de CO₂ producto de la operación del transporte de carga es Reforma Agraria-Puerto Juárez, dentro del corredor.

3.3.10 Corredor del Pacífico

Los resultados se pueden observar en la tabla 3.53, donde los vehículos de carga emiten un total de 1798.29 toneladas diarias de CO₂. Esta cantidad de emisiones de CO₂ del transporte de carga representa un 45.75% del total de emisiones del corredor. Por lo que se pone de manifiesto que el mayor generador de emisiones del transporte en el corredor son los vehículos destinados al transporte de carga.

De acuerdo con los resultados mostrados en la tabla 3.53, la carretera con mayores emisiones de CO₂ producto de la operación del transporte de carga es Playa Azul-Manzanillo, dentro del corredor.

Tabla 3.53 Toneladas diarias emitidas por vehículos de carga, corredor Pacífico

Carretera	Clave ID	нс	со	NOx	PM	CO ₂	SO ₂				
Tepic-Ixtapan de La Concepción	10.01	0.03	0.07	0.31	0.01	24.04	0.00				
Ixtapan de La Concepción	10.02	0.01	0.03	0.10	0.00	7.88	0.00				
Tepic-Puerto Vallarta	10.03	0.28	0.67	3.30	0.13	247.40	0.05				
Manzanillo-Puerto Vallarta	10.04	0.26	0.70	3.18	0.13	242.38	0.05				
Libramiento de Manzanillo Norte	10.05	0.02	0.06	0.36	0.01	27.30	0.01				
Armería-Manzanillo	10.06	0.14	0.40	1.91	0.07	148.34	0.03				
Playa Azul-Manzanillo	10.07	0.27	0.51	4.08	0.13	301.67	0.06				
Zihuatanejo-La Mira	10.08	0.09	0.25	1.28	0.05	97.34	0.02				
Acapulco-Zihuatanejo	10.09	0.22	0.48	2.99	0.11	222.37	0.04				
Las Cruces-Pinotepa Nacional	10.10	0.28	0.64	3.31	0.12	247.21	0.05				
Santiago Pinotepa Nacional-Salina Cruz	10.11	0.23	0.51	3.13	0.11	232.35	0.05				
TOTAL		1.83	4.32	23.95	0.88	1798.29	0.35				

3.3.11 Corredor Mazatlán-Matamoros

Los resultados se pueden observar en la tabla 3.54, donde los vehículos de carga emiten un total de 4051.93 toneladas diarias de CO₂. Esta cantidad de emisiones

de CO₂ del transporte de carga representa un 68.31% del total de emisiones del corredor. Por lo que se pone de manifiesto que el mayor generador de emisiones del transporte en el corredor son los vehículos destinados al transporte de carga.

Tabla 3.54 Toneladas diarias emitidas por vehículos de carga, corredor Mazatlán-Matamoros

Carretera	Clave ID	нс	СО	NOx	PM	CO ₂	SO ₂
Durango-Mazatlán	11.01	0.17	0.26	1.94	0.06	134.31	0.03
Libramiento de Durango	11.02	0.01	0.03	0.17	0.01	13.10	0.00
Durango-Yerbanís	11.03	0.29	0.36	4.41	0.13	315.51	0.06
Saltillo-Torreón	11.04	1.62	1.39	27.50	0.72	1957.86	0.39
Libramiento Norponiente de Saltillo	11.05	0.13	0.10	2.34	0.06	165.55	0.03
Saltillo – Monterrey libre	11.06	0.57	0.42	7.55	0.21	501.94	0.10
Saltillo – Monterrey cuota	11.07	0.12	0.08	1.99	0.05	138.62	0.03
Monterrey-Reynosa	11.08	0.52	0.72	8.06	0.24	581.57	0.11
Libramiento de Reynosa	11.09	0.19	0.21	1.86	0.06	120.59	0.02
Matamoros – Reynosa	11.10	0.16	0.24	1.79	0.06	122.88	0.02
TOTAL		3.79	3.83	57.61	1.60	4051.93	0.80

De acuerdo con los resultados mostrados en la tabla 3.54, la carretera con mayores emisiones de CO₂, producto de la operación del transporte de carga es Saltillo-Torreón, dentro del corredor.

3.3.12 Corredor Transpeninsular de Baja California

Los resultados se pueden observar en la tabla 3.55, donde los vehículos de carga emiten un total de 1,821.57 toneladas diarias de CO₂. Esta cantidad de emisiones de CO₂ del transporte de carga representa un 50.98% del total de emisiones del corredor. Por ello, se pone de manifiesto que el mayor generador de emisiones del transporte en el corredor son los vehículos destinados al transporte de carga.

Tabla 3.55 Toneladas diarias emitidas por vehículos de carga, corredor Peninsular de Baja California

Carretera	Clave ID	нс	co	NOx	PM	CO ₂	SO ₂
Carretera	Clave ID	HC	CO	NOX	PIVI	CO ₂	3 U ₂

Tijuana-Ensenada	12.01	0.14	0.28	1.90	0.06	140.96	0.03
Ensenada-Lázaro Cárdenas	12.02	1.02	1.13	7.90	0.25	486.36	0.10
Lázaro Cárdenas-Ent. Punta Prieta	12.03	0.27	0.36	3.88	0.12	274.52	0.05
Ent. Punta Prieta-Guerrero Negro	12.04	0.07	0.07	1.03	0.03	71.43	0.01
Santa Rosalía-Guerrero Negro	12.05	0.15	0.22	1.80	0.06	124.78	0.02
Loreto-Santa Rosalía	12.06	0.13	0.20	1.34	0.04	90.93	0.02
Cd. Insurgentes-Loreto	12.07	0.06	0.09	0.75	0.02	52.81	0.01
La Paz-Cd. Insurgentes	12.08	0.22	0.42	3.03	0.10	222.53	0.04
Cabo San Lucas-La Paz	12.09	0.23	0.60	2.83	0.11	216.59	0.04
San Pedro-Cabo San Lucas	12.10	0.12	0.26	1.88	0.06	140.69	0.03
TOTAL		2.41	3.62	26.34	0.86	1821.57	0.36

De acuerdo con los resultados mostrados en la tabla 3.55, la carretera con mayores emisiones de CO₂, producto de la operación del transporte de carga es Ensenada-Lázaro Cárdenas, dentro del corredor.

3.3.13 Corredor del Altiplano

Los resultados se pueden observar en la tabla 3.56, donde los vehículos de carga emiten un total de 2,435.22 toneladas diarias de CO_2 . Esta cantidad de emisiones de CO_2 del transporte de carga representa un 56.67% del total de emisiones del corredor. Por ello, se pone de manifiesto que el mayor generador de emisiones del transporte en el corredor son los vehículos destinados al transporte de carga.

Tabla 3.56 Toneladas diarias emitidas por vehículos de carga, corredor del Altiplano

Carretera	Clave ID	НС	СО	NOx	PM	CO ₂	SO ₂
Toluca-Palmillas	13.01	0.05	0.12	0.72	0.03	54.21	0.01
Libramiento Norte de la Ciudad de México	13.02	0.23	0.52	3.16	0.11	238.11	0.05
México-Puebla	13.03	0.43	0.78	7.26	0.23	539.03	0.11
Puebla-Acatzingo	13.04	0.88	1.05	13.57	0.39	970.80	0.19
Amozoc-Perote	13.05	0.09	0.23	1.32	0.05	100.48	0.02
Libramiento Perote	13.06	0.02	0.02	0.26	0.01	18.98	0.00
San Hipólito-Xalapa	13.07	0.50	0.89	7.06	0.23	513.61	0.10
TOTAL		2.20	3.62	33.35	1.03	2435.22	0.48

De acuerdo con los resultados mostrados en la tabla 3.56, la carretera con mayores emisiones de CO₂, producto de la operación del transporte de carga es la Puebla-Acatzingo, dentro del corredor.

3.3.14 Corredor Acapulco-Tuxpan

Los resultados se pueden observar en la tabla 3.57, donde los vehículos de carga emiten un total de 3,583.23 toneladas diarias de CO₂. Esta cantidad de emisiones de CO₂ del transporte de carga representa un 54.01% del total de emisiones del corredor. Por ello, se pone de manifiesto que el mayor generador de emisiones del transporte en el corredor son los vehículos destinados al transporte de carga.

Tabla 3.57 Toneladas diarias emitidas por vehículos de carga, corredor Acapulco-Tuxpan

Carretera	Clave ID	нс	СО	NOx	PM	CO ₂	SO ₂
Cuernavaca-Acapulco	14.01	0.84	0.85	6.05	0.20	351.86	0.07
Libramiento de Cuernavaca	14.02	0.15	0.39	1.54	0.06	118.87	0.02
México-Cuernavaca	14.03	0.07	0.11	0.98	0.03	71.48	0.01
La Pera-Cuautla	14.04	0.06	0.15	0.95	0.03	71.86	0.01
Santa Bárbara-Izúcar de Matamoros	14.05	0.09	0.15	1.35	0.04	99.36	0.02
Atlixco-Jantetelco	14.06	0.10	0.11	0.66	0.02	39.62	0.01
Puebla-Atlixco	14.07	0.12	0.16	0.61	0.02	38.26	0.01
Puebla-Acatzingo	14.08	0.68	0.75	10.69	0.30	759.49	0.15
Acatzingo-Cd. Mendoza	14.09	0.60	0.78	8.66	0.26	609.18	0.12
Libramiento de Córdoba	14.10	0.46	0.63	5.12	0.17	343.63	0.07
Córdoba-Veracruz	14.11	0.38	0.52	6.46	0.19	470.61	0.09
Poza Rica-Veracruz	14.12	0.56	0.77	7.22	0.23	502.95	0.10
Gutiérrez Zamora-Tihuatlán	14.13	0.05	0.08	0.89	0.03	65.00	0.01
Tihuatlán-Tuxpan	14.14	0.06	0.10	0.59	0.02	41.06	0.01
TOTAL		4.20	5.56	51.77	1.60	3583.23	0.71

De acuerdo con los resultados mostrados en la tabla 3.57, la carretera con mayores emisiones de CO₂, producto de la operación del transporte de carga es la Puebla-Acatzingo, dentro del corredor.

3.3.15 Corredor Acapulco-Veracruz

Los resultados se pueden observar en la tabla 3.58, donde los vehículos de carga emiten un total de 2,974.23 toneladas diarias de CO₂. Esta cantidad de emisiones de CO₂ del transporte de carga representa un 52.58% del total de emisiones del corredor. Por ello, se pone de manifiesto que el mayor generador de emisiones del transporte en el corredor son los vehículos destinados al transporte de carga.

Tabla 3.58 Toneladas diarias emitidas por vehículos de carga, corredor Acapulco-Veracruz

Carretera	Clave ID	нс	СО	NOx	PM	CO ₂	SO ₂
Cuernavaca-Acapulco	15.01	0.84	0.85	6.05	0.20	351.86	0.07
Libramiento de Cuernavaca	15.02	0.15	0.39	1.54	0.06	118.87	0.02
México-Cuernavaca	15.03	0.07	0.11	0.98	0.03	71.48	0.01
La Pera-Cuautla	15.04	0.06	0.15	0.95	0.03	71.86	0.01
Santa Bárbara-Izúcar de Matamoros	15.05	0.09	0.15	1.35	0.04	99.36	0.02
Atlixco-Jantetelco	15.06	0.10	0.11	0.66	0.02	39.62	0.01
Puebla-Atlixco	15.07	0.12	0.16	0.61	0.02	38.26	0.01
Puebla-Acatzingo	15.08	0.68	0.75	10.69	0.30	759.49	0.15
Acatzingo-Cd. Mendoza	15.09	0.60	0.78	8.66	0.26	609.18	0.12
Libramiento de Córdoba	15.10	0.46	0.63	5.12	0.17	343.63	0.07
Córdoba-Veracruz	15.11	0.38	0.52	6.46	0.19	470.61	0.09
TOTAL		3.53	4.61	43.08	1.33	2974.23	0.59

De acuerdo con los resultados mostrados en la tabla 3.58, la carretera con mayores emisiones de CO₂, producto de la operación del transporte de carga es la Puebla-Acatzingo, dentro del corredor.

3.3.16 Corredor Circuito Transístmico

Los resultados se pueden observar en la tabla 3.59, donde los vehículos de carga emiten un total de 1,862.87 toneladas diarias de CO₂. Esta cantidad de emisiones de CO₂ del transporte de carga representa un 62.29% del total de emisiones del corredor. Por ello, se pone de manifiesto que el mayor generador de emisiones del transporte en el corredor son los vehículos destinados al transporte de carga.

Tabla 3.59 Toneladas diarias emitidas por vehículos de carga, corredor Circuito Transístmico

Carretera	Clave ID	нс	СО	NOx	PM	CO ₂	SO ₂
Coatzacoalcos-Salina Cruz	16.01	0.16	0.17	1.70	0.05	111.78	0.02
Ent. La Ventosa-San Pedro Tanapatepec	16.02	0.13	0.17	1.99	0.06	143.78	0.03
Tapanatepec-Talismán	16.03	0.07	0.09	1.10	0.03	79.92	0.02
Arriaga-Ocozocoautla	16.04	0.06	0.11	0.78	0.03	57.29	0.01

Las Choapas-Ocozocoautla	16.05	0.35	0.54	5.50	0.17	398.35	0.08
Coatzacoalcos-Salina Cruz	16.06	0.99	1.45	14.89	0.45	1071.75	0.21
TOTAL		1.76	2.54	25.96	0.79	1862.87	0.37

De acuerdo con los resultados mostrados en la tabla 3.59, la carretera con mayores emisiones de CO_2 , producto de la operación del transporte de carga es la Coatzacoalcos-Salina Cruz, dentro del corredor.

3.4 Desarrollo de indicadores de las emisiones de CO₂ para el transporte de carga en los corredores carreteros en México

De acuerdo con los indicadores propuestos, se desarrollarán los correspondientes para cada corredor analizado, y los resultados se comentan en los apartados siguientes.

3.4.1 Toneladas de CO₂ por kilómetro

La tabla 3.60 muestra los resultados de las toneladas de CO₂ por kilómetro en cada corredor carretero analizado. La tabla incluye también las variables principales con las que se construyó el indicador, tales como emisiones totales y las longitudes de cada corredor.

Tabla 3.60 Indicador toneladas de CO₂ por kilómetro por corredor

	3.00 indicador torieradas de C			
Número	Nambus dal assuradan	Longitud del	Emisiones de	
identificador	Nombre del corredor	corredor	CO ₂	"Toneladas de CO ₂
del corredor		(kilómetros)	(toneladas)	por kilómetro"
1	México-Nuevo Laredo	1155.61	11562.65	10.01
1.1	 Ramal a Piedras negras 	316.41	683.30	2.16
2	México-Cd Juárez	2003.14	9261.34	4.62
3	México-Nogales	2437.46	7819.74	3.21
3.1	Ramal a Tijuana	761.13	1492.05	1.96
4	Manzanillo – Tampico	1364.27	5763.98	4.22
4.1	Ramal a Lázaro Cárdenas	609.69	1931.41	3.17
5	México-Veracruz	389.16	2851.22	7.33
6	Veracruz-Monterrey con ramal a Matamoros	1291.32	3529.8	2.73
7	Puebla-Oaxaca-Cd. Hidalgo	1095.14	2426.00	2.22
8	México-Puebla-Progreso	1302.35	6583.62	5.06
9	Peninsular de Yucatán	1203.24	1479.01	1.23
10	Corredor del Pacífico	2045.48	1798.29	0.88
11	Mazatlán-Matamoros	1348.29	4051.93	3.01
12	Transpeninsular de Baja California	1878.61	1821.57	0.97
13	Altiplano	587.15	2435.22	4.15
14	Acapulco-Tuxpan	1022.84	3583.23	3.50
14	Acapulco-Veracruz	766.81	2974.23	3.88
16	Circuito Transístmico	799.57	1862.87	2.33

El corredor que presenta mayores emisiones de CO₂ por kilómetro producidas por el transporte de carga es el México-Nuevo Laredo.

3.4.2 Gramos de CO₂ por vehículo por kilómetro

La tabla 3.61 muestra los resultados de las toneladas de gramos de CO₂ por vehículo por kilómetro en cada corredor carretero analizado. La tabla incluye también las variables principales con las que se construyó el indicador, tales como emisiones totales y las longitudes de análisis de cada corredor y el TDPA correspondiente a los vehículos pesados.

Tabla 3.61 Indicador gramos de CO₂ por vehículo por kilómetro en cada corredor

Número identificador del corredor	Nombre del corredor	Longitud de análisis del corredor (kilómetros)	Emisiones de CO ₂ (toneladas)	TDPA (vehículos pesados)*	Indicador 2 "Gramos de CO ₂ por vehículo por kilómetro"
1	México-Nuevo Laredo	2279.02	11562.65	4533	1119.4
1.1	 Ramal a Piedras negras 	543.12	683.30	1347	933.8
2	México-Cd Juárez	3656.52	9261.34	2665	950.4
3	México-Nogales	4484.07	7819.74	1750	996.7
3.1	Ramal a Tijuana	1057.24	1492.05	1397	1010.1
4	Manzanillo – Tampico	2050.25	5763.98	3904	720.2
4.1	Ramal a Lázaro Cárdenas	836.29	1931.41	2012	1148.1
5	México-Veracruz	778.32	2851.22	3498	1047.4
6	Veracruz-Monterrey con ramal a Matamoros	1758.48	3529.8	1881	1067.2
7	Puebla-Oaxaca-Cd. Hidalgo	1581.65	2426.00	1117	1373.1
8	México-Puebla-Progreso	2408.43	6583.62	2053	1331.4
9	Peninsular de Yucatán	1757.18	1479.01	1118	753.1
10	Corredor del Pacífico	2387.46	1798.29	661	1138.7
11	Mazatlán-Matamoros	2423.63	4051.93	1287	1299.5
12	Transpeninsular de Baja California	2296.0	1821.57	999	794.2
13	Altiplano	1109.2	2435.22	1636	1341.6
14	Acapulco-Tuxpan	1833.13	3583.23	1653	1182.6
14	Acapulco-Veracruz	1453.51	2974.23	1661	1231.8
16	Circuito Transístmico	953.25	1862.87	1444	1353
				Promedio	1094.33

Nota: El TDPA es el promedio ponderado en todo el corredor.

El indicador de gramos por kilómetro de CO₂ que resulta mayor en los corredores analizados es el Puebla-Oaxaca-Cd. Hidalgo con un factor de emisión de 1,373.1 gramos por vehículo de carga de CO₂ por kilómetro recorrido.

3.4.3 Toneladas de CO₂ por millón de toneladas-kilómetro

La tabla 3.62 muestra los resultados de las toneladas de CO₂ por millón de toneladas-kilómetro en cada corredor carretero analizado. La tabla incluye también las variables principales con las que se construyó el indicador, tales como emisiones totales de CO₂, la longitud de análisis y la carga estimada diaria.

Tabla 3.62 Indicador toneladas de CO₂ por millón de toneladas-kilómetro

Número identificador del corredor	Nombre del corredor	Longitud de análisis del corredor (kilómetros)	Emisiones de CO ₂ (toneladas)	Carga estimada diaria (Toneladas)	Indicador 3 "Toneladas de CO ₂ por millón de toneladas- kilómetro"
1	México-Nuevo Laredo	2279.02	11562.65	64993	78.1
1.1	 Ramal a Piedras negras 	543.12	683.30	19320	65.1
2	México-Cd Juárez	3656.52	9261.34	26912	94.1
3	México-Nogales	4484.07	7819.74	20037	87.0
3.1	Ramal a Tijuana	1057.24	1492.05	16001	88.2
4	Manzanillo – Tampico	2050.25	5763.98	61085	46.0
4.1	Ramal a Lázaro Cárdenas	836.29	1931.41	31478	73.4
5	México-Veracruz	778.32	2851.22	47055	77.9
6	Veracruz-Monterrey con ramal a Matamoros	1758.48	3529.8	22400	89.6
7	Puebla-Oaxaca-Cd. Hidalgo	1581.65	2426.00	7231	212.1
8	México-Puebla-Progreso	2408.43	6583.62	18831	145.2
9	Peninsular de Yucatán	1757.18	1479.01	9966	84.5
10	Corredor del Pacífico	2387.46	1798.29	5213	144.5
11	Mazatlán-Matamoros	2423.63	4051.93	7205	232.1
12	Transpeninsular de Baja California	2296.0	1821.57	7571	104.8
13	Altiplano	1109.2	2435.22	15604	140.7
14	Acapulco-Tuxpan	1833.13	3583.23	15343	127.4
14	Acapulco-Veracruz	1453.51	2974.23	15419	132.7
16	Circuito Transístmico	953.25	1862.87	11218	174.2
				Promedio	115.66

Nota: El TDPA es el promedio ponderado en todo el corredor.

El corredor que más emisiones emite a la atmósfera de CO₂ por tonelada transportada por kilómetro es el Mazatlán-Matamoros.

La primera conclusión de este indicador es que existe en dicho corredor un mayor número de vehículos que viajan vacíos.

4 Modelado de la línea base de las emisiones de CO₂ del transporte de carga

Para la modelización de la línea base fue desarrollada mediante los indicadores del capítulo anterior y la estimación de las tendencias de crecimiento que tendrán para el futuro dichos indicadores, por lo que se determinaron primeramente dichas tasas de crecimiento.

4.1 Estimaciones de las tasas de crecimiento

Los indicadores de emisiones parten de dos variables importantes para su determinación: el vehículo y la carga. Partiendo de estas variables fue necesario estimar las tasas de crecimiento de ambas, con base en cifras de la estadística de la Secretaría de Comunicaciones y Transportes.

De esta manera, la tabla 4.1 muestra la estadística básica del crecimiento del parque vehicular (sólo de las unidades de tracción registradas por la SCT del año 2001 al 2013).

Tabla 4.1 Estadística del parque vehicular registrado por SCT

Verniculo	Clase	2013	2012	2011	2010	2009	2000	2001	2000	2003	2004	2003	2002	2001
Unidades motrices		381,250	380,342	351,705	342,064	331,686	273,455	310,013	292,418	279,112	268,725	260,645	250,025	235,767
Camión de dos ejes	C2	75,293	76,667	70,469	67,012	64,463	53,393	60,308	57,601	55,451	54,059	52,542	50,694	47,623
Camión de tres ejes	C3	64,582	64,784	60,333	61,858	60,543	45,271	57,254	56,052	55,180	54,554	53,821	52,272	49,999
Camión de cuatro ejes	C4					10	6	6	6	6	7	7	7	7
Tractocamión de dos ejes	T2	2,276	2,246	2,021	1,963	1,867	1,500	1,745	1,684	1,612	1,567	1,525	1,480	1,443
Tractocamión de tres ejes	Т3	238,390	235,993	218,332	210,786	204,403	172,950	190,357	176,781	166,613	158,329	152,544	145,361	136,480
Otros		709	652	550	445	400	335	343	294	250	209	206	211	215
	Tasa anual	0.24%	8.14%	2.82%	3.13%	21.29%	-11.79%	6.02%	4.77%	3.87%	3.10%	4.25%	6.05%	4.32%

Fuente: Estadística Básica del Autotransporte Federal. SCT (2001-2013)

Con los datos de la tabla 4.1, se estimó el crecimiento anual del parque vehicular y el correspondiente al periodo analizado, teniendo así un crecimiento promedio del 4.32% anual.

En relación con la carga, también se obtuvieron los datos estadísticos para el mismo periodo, los cuales se muestran en la tabla 4.2.

Tabla 4.2 Estadística de la carga estimada transportada

	2013	2012	2011	2010	2009	2008	2007	2006	2005	2004	2003	2002	2001
Demanda atendida (miles de toneladas)	502,150	498,147	485,502	410,772	394,079	484,300	473,859	445,449	435,500	426,100	416,200	411,100	409,210
Tráfico (miles de ton-km)	235,427,0 00	233,464,0 00	226,900,0 00	192,600,4 47	185,006,9 44	227,289,9 42	222,390,6 77	209,392,3 11	204,216,6 00	199,800,0 00	195,200,0 00	192,900,0 00	191,900,7 33
Tasa anual	0.80%	2.60%	18.19%	4.24%	-18.63%	2.20%	6.38%	2.28%	2.21%	2.38%	1.24%	0.46%	2.03%

Fuente: Estadística Básica del Autotransporte Federal. SCT (2001-2013)

La estimación del crecimiento para la carga se realizó también en términos anuales y se muestran en la tabla 4.2, así como el promedio de la tasa de crecimiento que representó un 2.03% en todo el periodo analizado.

Los datos de la tabla 4.1 del parque vehicular total y de la carga anual estimada transportada se graficaron y se ilustran en la figura 9. Los gráficos permitieron además modelar las líneas de tendencia de ambas variables.

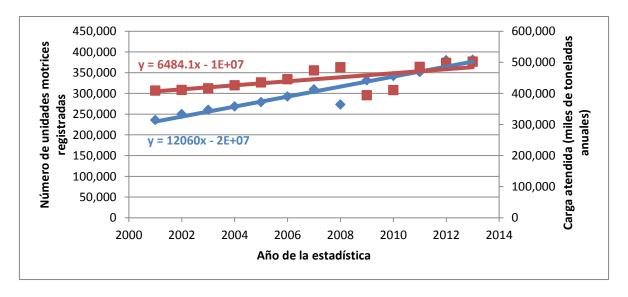


Figura 9. Modelación de la estadística básica del autotransporte de carga en México

Fuente: Elaboración propia con información de la Estadística Básica del Autotransporte Federal. SCT (2001-2013)

Ambas líneas de tendencia lineal registran diferentes tasas de crecimiento, por lo que para realizar las proyecciones se decidió utilizar un promedio de ambas. Esta justificación la basamos principalmente al suponer que el crecimiento de unidades debe ir directamente relacionado con la carga a transportar, de esta manera el promedio de crecimiento a utilizar será del 3.18%.

4.2 Proyecciones de la línea base 2020, 2030 y 2050 de las emisiones del transporte de carga

El pronóstico de crecimiento vehicular para los años con una tasa del 4.32% será el siguiente:

	2020	2030	2050
Pronóstico	461,181	581,781	822,982

Para la carga el pronóstico con un 2.03% de crecimiento será:

	2020	2030	2050
Pronóstico	529,860	594,701	724,383

La línea base de las emisiones totales para el año 2012 correspondiente a los 16 corredores analizados se presenta en la tabla 4.3.

Tabla 4.3 Emisiones totales de los 16 corredores para el transporte carga

No. corredor	Nombre del corredor	Longitud (kms)	НС	со	NOx	PM	CO ₂	SO ₂
1	México-Nuevo Laredo	1155.61	14.22	10.02	177.20	4.90	11562.65	2.28
1.1	Ramal a Piedras negras	316.41	0.84	1.15	9.88	0.31	683.30	0.13
2	México-Cd Juárez	2003.14	10.95	12.64	135.65	4.05	9261.34	1.83
3	México-Nogales	2437.49	8.17	9.43	111.59	3.21	7819.74	1.54
3.1	Ramal a Tijuana	761.13	1.65	1.54	21.92	0.62	1492.05	0.29
4	Manzanillo-Tampico	1364.27	6.06	7.27	82.99	2.47	5763.98	1.14
4.1	Ramal a Lázaro Cárdenas	609.69	2.10	3.17	27.15	0.85	1931.41	0.38
5	México-Veracruz	389.16	2.91	4.15	40.24	1.24	2851.22	0.56
6	Veracruz-Monterrey con ramal a Matamoros	1291.32	3.72	4.55	50.64	1.51	3529.80	0.70
7	Puebla-Oaxaca-Cd. Hidalgo	1095.14	2.39	3.93	33.78	1.08	2426.00	0.48
8	México-Puebla-Progreso	1302.35	5.71	9.36	90.41	2.81	6583.62	1.30
9	Peninsular de Yucatán	1203.24	1.58	2.75	20.40	0.66	1479.01	0.29
10	Corredor del Pacífico	2045.48	1.83	4.32	23.95	0.88	1798.29	0.35
11	Mazatlán-Matamoros	1348.29	3.79	3.83	57.61	1.60	4051.93	0.80
12	Transpeninsular de Baja California	1878.61	2.41	3.62	26.34	0.86	1821.57	0.36
13	Altiplano	587.15	2.20	3.62	33.35	1.03	2435.22	0.48
14	Acapulco-Tuxpan	1022.84	4.20	5.56	51.77	1.60	3583.23	0.71
14	Acapulco-Veracruz	872.01	3.53	4.61	43.08	1.33	2974.23	0.59
16	Circuito Transístmico	799.57	1.76	2.54	25.96	0.79	1862.87	0.37
	Total (Toneladas diarias)		80.02	98.06	1063.91	31.8	73911.46	14.58

En algunos corredores existen tramos carreteros que se duplican al traslaparse las rutas, por lo que la sumatoria de los 16 corredores no es correcta; es decir de los 22,482.9 kilómetros únicamente quedarán 19,944.61 kilómetros. Al eliminar los tramos comunes se tiene entonces un total de 58,534.04 toneladas diarias o 21.36 megatoneladas anuales de CO₂.

Se pueden obtener los totales para los otros contaminantes, pero para las proyecciones utilizaremos únicamente las emisiones de CO₂ del transporte de carga.

En la tabla 4.4 se muestra el resultado de las proyecciones para el año base 2012, junto con los pronósticos para los años 2020, 2030 y 2050 con base en una tasa de crecimiento del 3.18 por ciento.

Tabla 4.4 Pronóstico de emisiones de CO₂ para el transporte de carga en los corredores de transporte

	Año base		Pronóstico	
	2012	2020	2030	2050
Emisiones de CO ₂ (megatoneladas anuales)	21.6	27.4	37.5	70.2

La figura 10 muestra la línea base de las emisiones y su pronóstico de crecimiento. Con dicha línea se pueden entonces definir las acciones de mitigación correspondientes a fin de identificar aquellas que pudieran tener un mayor impacto en la reducción del CO₂.

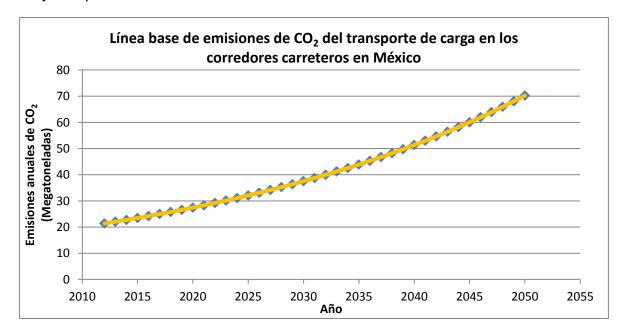


Figura 10. Modelación de la línea base de las emisiones de CO₂ generadas por el transporte de carga en los corredores de transporte en México

4.3 Modelado de la línea base de las emisiones de CO₂ del transporte de carga mediante SIG

La modelación de la línea base a través de Sistemas de Información Geográfica (SIG) se basó únicamente en los corredores más importantes, para poder identificar visualmente las carreteras donde existe una mayor concentración de emisiones de CO₂ producidas por kilómetro recorrido del transporte de carga.

La figura 11 muestra la modelación sobre un mapa de Google Maps, en la que se estiman las emisiones anuales por kilómetro en los corredores ilustrados.

Figura 11. Modelación de las emisiones de CO₂ en los corredores de transporte de carga

5 Conclusiones

En los años recientes el tema de la estimación de emisiones ha cobrado mucha importancia a escala mundial, ya que, a partir de la firma del Protocolo de Kioto, los diferentes países que lo avalaron deben reducir las emisiones de gases de efecto invernadero (GEI), mientras que el resto de los países, de manera voluntaria, se han sumado a contribuir a las reducciones de estos gases.

En este sentido, se han desarrollado diversas herramientas y metodologías para entender el cambio climático. Las metodologías más utilizadas son las que el Panel Intergubernamental de Cambio Climático ha implementado en sus países miembros mediante la cual estiman las emisiones generadas en los diferentes sectores cuantificando el consumo de energía y transformándolo en emisiones. De esta manera, se identifica el impacto del sector transporte y la técnica es conocida de arriba hacia abajo (*Top-Down*).

Con excepción de los balances de energía que se utilizan para estimar emisiones con metodologías *Top-Down*—que son poco precisas—, no se cuenta con información respecto de la generación de GEI en el transporte de carga en México. Esta carencia de información fue la motivación principal para la elaboración de la presente investigación, mediante la cual se generó un escenario de emisiones de CO₂ en los corredores de transporte de carga en el país, estimando la cantidad de emisiones anuales que este sector genera.

El escenario de emisiones se desarrolló mediante el desarrollo de una metodología para la estimación de emisiones en carreteras, con base en la utilización de la herramienta informática HDM-4, la cual incluye las variables más importantes, derivadas del medioambiente, del camino y del vehículo. Los resultados muestran la cantidad de emisiones que se generan en por tramo (emisiones de hidrocarburos, monóxido de carbono, óxidos de nitrógeno, partículas, dióxido de carbono y óxido de azufre) y tipo de vehículo. A este tipo de metodologías se le denomina de abajo hacia arriba (*Bottom-Up*) y son necesarias para poder evaluar las diferentes estrategias de mitigación encaminadas a reducir emisiones.

Los contaminantes criterio estimados dentro del modelo son seis: hidrocarburos, dióxido de azufre, monóxido de carbono, partículas suspendidas o en suspensión (PM, por sus siglas en inglés) y dióxido de carbono. Únicamente el dióxido de carbono (CO₂) y algunos óxidos de nitrógeno están considerados como GEI.

Las cifras que se obtuvieron correspondientes a emisiones de CO₂ permitieron proponer la construcción de tres indicadores ambientales de presión en los corredores de transporte:

- Emisiones de CO₂ por kilómetro (diarias)
- Factor de emisión promedio del parque vehicular para el transporte de carga
- Toneladas de CO₂ por millón de toneladas-kilómetro

El primer indicador refleja la cantidad de emisiones diarias en toneladas emitidas a la atmósfera por kilómetro por el transporte de carga en los corredores analizados. El segundo refleja el factor de emisiones en gr/km en promedio de cada unidad del transporte de carga que circula en el país. El tercero representa las emisiones de CO₂ por cada tonelada por kilómetro transportada en los corredores de transporte analizados.

Con la información sobre emisiones de CO₂ por kilómetro se definió la línea base para el transporte de carga en el año 2012, y se pronosticaron las emisiones futuras de acuerdo con la estadística básica para este sector; de esta manera, se obtuvieron las emisiones para los años 2020, 2030 y 2050.

Esta información permite derivar la tendencia de las emisiones de CO₂ producidas por el subsector transporte de carga por carretera, modeladas a través de una línea base, sobre las cuales se pueden aplicar diferentes estrategias para reducir el impacto de GEI que se generan al medio ambiente. Entre las estrategias susceptibles de evaluación en México destacan: la renovación del parque vehicular del autotransporte de carga; la eco-conducción, llamada también conducción técnica; la adopción de una normativa en materia de eficiencia vehicular; el uso de sistemas inteligentes de transporte en autopistas; el transporte intermodal; transferencias de la carga al ferrocarril; construcción de libramientos carreteros y mejora de la superficie de rodamiento en las carreteras.

Se realizó un primer modelado de la línea base sobre algunos corredores de transporte para que, a través de SIG, se visualizara el impacto que los GEI tienen en el medio ambiente en los corredores carreteros.

En las siguientes fases de esta investigación se propondrán pautas para que los tomadores de decisiones en el sector transporte escojan, entre estrategias metodológicamente bien documentadas, la dirección de las inversiones en la mitigación de las emisiones de GEI como acciones contra el cambio climático. Es aquí donde inicia el objetivo de analizar cada acción de mitigación y evaluar su potencial de mitigación, para posteriormente realizar un análisis multicriterio y encontrar la estrategia óptima para reducir los GEI.

Finalmente, es importante ampliar las capacidades de los centros de investigación del transporte para que se fortalezcan y permitan acelerar la aportación de resultados, con vistas a que estos puedan discutirse e implementarse de manera más expedita y, con ello, garantizar resultados en un mediano plazo.

El compromiso de investigación en temas de cambio climático está inmerso actualmente en el Programa Especial de Cambio Climático, el cual ayudará a fortalecer la investigación aplicada encaminada al logro de los resultados en la reducción de gases de efecto invernadero.

Bibliografía

Bennett, Christopher R. *HDM-4 Emissions model – draft specifications: International study of highway development and management tools.* Reino Unido: University of Birmingham, 1996

Diario Oficial de la Federación. "Ley General de Cambio Climático". México, DF, junio de 2012

Dios Noceda, María. Estimación, análisis y evaluación de inventarios de emisiones atmosféricas antropogénicas a escala local, regional y continental. Santiago de Compostela (España): Universidad de Santiago de Compostela, marzo de 2013

Hammarström, Ulf. Exhaust emissions from road traffic – description of driving patterns by means of simulations models. Swedish National Road and Transport Research Institute, noviembre de 1995

Journard, Robert. "Methods of estimation of atmospheric emissions from transport: European scientist network and scientific state-of-the art". En: Actions COST 139 final report. Francia: INRETS, marzo de 1999

Junta de Andalucía. Sistema de Indicadores Climáticos Ambientales. (Recuperado de www.pnuma.org, 15 de diciembre de 2014

Panel Intergubernamental de Cambio Climático. Directrices del IPCC para los inventarios nacionales de gases de efecto invernadero. (Versión revisada en 1996)

Programa de Naciones Unidas para el Medio Ambiente. Hora de actuar para reducir los contaminantes climáticos de vida corta. (2014)

Secretaría de Medio Ambiente y Recursos Naturales. *Estrategia Nacional de Cambio Climático*. Visión 10-20-40. México, DF, j unio de 2013

Secretaría de Medio Ambiente y Recursos Naturales. *Indicadores básicos del desempeño ambiental en México*. (Recuperado de <u>www.semarnat.gob.mx</u> , 15 de diciembre de 2014)

Secretaría de Medio Ambiente y Recursos Naturales. *Programa Especial de Cambio Climático 2014-2018*. México, DF,abril de 2014

Transportation Research Laboratory. *Methodology for calculating transport emissions and energy consumption*. Reino Unido, 1999

United States Environmental Protection Agency. *Climate Change Indicators in the United States*. Washington, DC, julio de 2014

Unión Europea. "Medio ambiente, energía y transporte". Portal "Material didáctico de transporte" (Recuperado de www.eu-portal.net), 2003

World Road Association. *Highway Development and Management Handbook*. Versión 1.0. En: International study of highway development and management tools. Paris (Francia), 2000

Carretera Querétaro-Galindo km 12+000 CP 76700, Sanfandila Pedro Escobedo, Querétaro, México Tel +52 (442) 216 9777 ext. 2610 Fax +52 (442) 216 9671

publicaciones@imt.mx

http://www.imt.mx/