ISSN 0188-7297

Certificación ISO 9001:2008 ‡

Evaluación del módulo de resiliencia, en trayectorias de humedecimiento y secado

Natalia Pérez García Paul Garnica Anguas Hugo Nute Vargas Mónica Gudiño Espino

Publicación Técnica No. 355 Sanfandila, Qro, 2012

SECRETARÍA DE COMUNICACIONES Y TRANSPORTES

INSTITUTO MEXICANO DEL TRANSPORTE

Evaluación del módulo de resiliencia, en trayectorias de humedecimiento y secado

Publicación Técnica No. 355 Sanfandila, Qro, 2012

Esta investigación fue realizada en la Coordinación infraestructura del Instituto Mexicano del Transporte, por la Dra. Natalia Pérez García, el Dr. Paul Garnica Anguas, el Ing. Hugo Nute Vargas y Mónica Gudiño Espino.

El técnico Mario A. Pérez González participó en el desarrollo de las pruebas del módulo de resiliencia.

Índice

Resumen vi								
Re	Resumen ejecutivo							
Intr	Introducción 13							
	Definición del problema							
	Objetivo general							
	Obie	tivos específicos	14					
1.	 El módulo de resiliencia y su relación con el diseño de pavimentos 							
	1.1.	Introducción	17					
	1.2.	Consideración del factor climático en las guías de diseño AASHTO	19					
		1.2.1. Guía AASHTO 1961	20					
		1.2.2. Guía AASHTO 1972	20					
		1.2.3. Guía AASHTO 1986	21					
		1.2.4. Guía AASHTO 1993	24					
	1.3.	Guía de diseño AASHTO para pavimentos nuevos y rehabilitados	_					
_		(guía 2002)	24					
2.	. Materiales estudiados y procedimientos de prueba							
	2.1.	Descripcion de los materiales utilizados	33					
	2.2.	Procedimientos de prueba	35					
		2.2.1. Propiedades indice	30 25					
		2.2.2.1 Procedimiente de prueba	35					
		2.2.2.1. Procedimiento de proeba	38					
		de secado o de humedecimiento	50					
		2.2.2.3. Preparación de los especímenes para dos	39					
		trayectorias (de secado y humedecimiento o de						
	humedecimiento y secado)							
		2.2.2.4. Resistencia a la compresión sin confinar	40					
		2.2.2.4. Curva característica (SWCC)	40					
3.	Anál	isis de resultados	43					
	3.1.	Propiedades índice	43					
	3.2.	Curvas de compactación	43					
	3.3.	Curvas características	46					
	3.4.	Módulo de resiliencia	47					
	3.4.1. Muestras compactadas en el óptimo y que se humedecen o 4							
	se secan (una trayectoria)							

3.4.2. Muestras compactadas en el óptimo y que sufren un ciclo 65 de humedecimiento o secado pero que regresan a la condición óptima (dos trayectorias) (Suelo ML)

Conclusiones y Recomendaciones	
--	--

Referencias

69

71

Resumen

En los diseños de pavimentos actuales, el módulo de resiliencia es un parámetro fundamental para la determinación de los espesores de cada una de las capas que conforman la estructura; sin embargo, este parámetro no se mantiene constante en el material una vez que la obra es puesta en servicio, sino que varía de acuerdo con los cambios ambientales que se presenten en el lugar. Este estudio reporta datos de módulo de resiliencia de especímenes que fueron compactados con un contenido de agua óptimo y peso volumétrico seco máximo (con respecto a la prueba Proctor estándar) y que posteriormente fueron humedecidos o secados durante un cierto período. Los datos obtenidos se introdujeron al software MINITAB, para evaluar las ecuaciones que modelan la relación entre el módulo de resiliencia y otras propiedades como peso volumétrico seco, grado de saturación, contenido de agua, estado de esfuerzos, succión, etc. Los análisis estadísticos (análisis de varianza, gráficas de residuales y análisis de parámetros) mostraron que las ecuaciones son apropiadas para modelar la variación del módulo de resiliencia, en función de los parámetros ya mencionados.

Abstract

The resilient modulus is one of the most important parameters in the current pavement design to evaluate the thickness of every layer that constitutes the structure, however, after construction the materials have an initial resilient modulus which will suffer seasonal variations which need to be considered in the design. This research reports data of resilient modulus of samples which were compacted at optimum water content and maximum dry unit weight (regarding the Proctor standard test) and then they were allowed to absorb water or lose it by evaporation during different periods. The data were introduced in MINITAB to evaluate the equations that model the relationship between resilient modulus and other properties such as dry unit weight, degree of saturation, water content, stress state, suction, etc. The statistical analysis (analysis of variance, plots of residuals and adequacy of the predictors) showed that the equations are adequate to model the change in resilient modulus versus the aforementioned parameters.

Resumen ejecutivo

Para el diseño de toda estructura ingenieril, es necesario conocer las propiedades de los materiales con las cuales va a ser construida la obra. En el caso del diseño de pavimentos, la propiedades requeridas son: el módulo de resiliencia y la relación de Poisson; el segundo parámetro -por lo general- es considerado entre valores de 0.0 y 0.5; sin embargo, el módulo de resiliencia ha sido objeto de varias investigaciones llevadas a cabo tanto en México como en otros países, por la importancia que reviste en los actuales métodos empírico-mecanicistas de diseño de pavimentos.

En este documento, se presenta una introducción para exponer la importancia del estudio, así como los objetivos esperados. Posteriormente, se explica por qué las propiedades de los materiales que conforman un pavimento pueden cambiar, para luego mostrar cuál fue el origen del parámetro módulo de resiliencia. En la descripción de esto último, se hace referencia a cómo las guías de diseño AASHTO fueron cambiando y cuáles son los parámetros de diseño que contemplaban cada una de ellas. De hecho, se observa cómo la primera ecuación de diseño sólo aplicaba a las condiciones bajo las cuales se obtuvieron los datos, hasta la guía de 1986; la cual ya introdujo el parámetro módulo de resiliencia. Como forma complementaria de esta sección se presenta un ejemplo de cómo se determina el módulo de resiliencia efectivo de la subrasante. Es en esta parte del trabajo en la que se presenta la definición del módulo de resiliencia, la cual se explica mediante una gráfica que muestra un cierto número de ciclos de carga aplicados a una muestra y en donde se observa que la deformación sufrida por el espécimen es tanto de tipo recuperable como permanente.

Asimismo, se explica que una de las nuevas modalidades introducida en los nuevos diseños de pavimentos es tomar en consideración la variación de las propiedades durante la vida útil del pavimento. Se explica que tales variaciones se deben a las condiciones ambientales que suceden en el lugar en donde está localizada la estructura. Para introducir este comportamiento en los diseños, se requiere de modelos que muestren cómo varían los módulos de resiliencia con respecto a variables tales como la temperatura (para material de carpeta asfáltica) y contenidos de agua (para materiales de base, subbase, subrasante y terraplén). Algunos modelos propuestos en la bibliografía son mencionados en esta parte del trabajo.

Como última sección de la investigación, se presentan los resultados obtenidos en este trabajo. Estos incluyen datos detallados de módulo de resiliencia, para tres tipos de suelos (arcilla de alta compresibilidad (CH), limo de baja compresibilidad (ML) y una arena limosa (SM)). Todos los especímenes ensayados fueron

compactados con contenido de agua óptimo y peso volumétrico seco máximo, según la prueba Proctor estándar. Después de haber sido preparados, fueron humedecidos (por capilaridad) o secados (por evaporación), generalmente por periodos de 1, 10, 20 y 30 días; tras lo cual fueron cubiertos con plástico autoadherible y almacenados durante al menos dos semanas, para que el contenido de agua se distribuyera de forma uniforme, después de lo cual se ejecutó la prueba de módulo de resiliencia. Como paso final del procedimiento, se determinaron los contenidos de agua de cada una de las capas de la muestras, para evaluar la uniformidad del contenido de agua.

Una vez que se adquirieron los datos de módulo de resiliencia, se utilizó el software MINITAB para determinar los modelos que se ajustaban a los datos. El resultado fue un modelo exponencial con variables como (w-w_{opt}), (γ_d - γ_{dmax}), σ_3 y σ_d ; sin embargo, como los datos calculados no sólo fueron de contenido de agua gravimétrico sino también grados de saturación, succión y contenido de agua volumétrico; se presentan además los modelos en los cuales son utilizados dichos parámetros. De hecho, todos los modelos muestran coeficientes de determinación similares, independientemente de si se utiliza contenido de agua gravimétrico, contenido de agua volumétrico, grado de saturación o succión. Por lo tanto, se documentaron todos los modelos, de tal forma que el ingeniero que los utilice sea quien decida cuál es el más conveniente.

En la determinación de los modelos, MINITAB no sólo muestra la ecuación sino también el análisis para determinar si todas las variables involucradas en el modelo explican parte de la respuesta o si pueden ser eliminadas. En este caso, todas las variables consideradas resultaron importantes. Por otro lado, el software también proporciona el análisis de varianza del modelo, de lo cual se obtuvo que el modelo propuesto es adecuado para modelar la variación del módulo de resiliencia. Finalmente, se indican algunas gráficas de los valores residuales para demostrar que éstos se distribuyen normalmente y que además tienen una distribución aleatoria cuando se grafican contra el orden en el que se realizaron las observación.

Al final del documento enumeramos las conclusiones del trabajo.

Introducción

En la actualidad, existen diversas metodologías para el diseño del pavimento; algunas de ellas son la metodología AASHTO 1993, la del Instituto del Asfalto, la del Instituto de Ingeniería de la UNAM, etc. Cada una tiene como base los resultados de proyectos de investigación de campo o laboratorio. Por ejemplo, la guía AASHTO 1993 es una actualización de lo que fueron las guías de 1961, la de 1972 y la de 1986; las cuales a su vez fueron el producto de la investigación del tramo de prueba AASHO que consideró diferentes variables de estudio; por ejemplo, espesores de pavimento, diferentes granulometrías de los materiales, tipo de pavimento, diferentes niveles de carga, un tipo de suelo para la subrasante, etc. De igual forma, para desarrollar el método del Instituto de Ingeniería de la UNAM, también se llevaron a cabo estudios realizados en la república mexicana, además de los estudios realizados en la pista de prueba del mismo Instituto.

Sin embargo, las condiciones bajo las cuales se desarrollaron los tramos experimentales han cambiado y ahora se requieren de nuevas metodologías que tomen en cuenta variables que no fueron consideradas anteriormente, debido a la complejidad que esto implicaba. A la fecha, se cuenta con equipos de cómputo muy avanzados que pueden realizar una gran cantidad de operaciones en forma rápida; por esto, las nuevas metodologías de diseño han introducido variables como:

- El uso de espectros de carga y no ejes equivalentes.
- Considerar la variación durante la vida útil de las propiedades de los materiales que forman las diferentes capas; por ejemplo, el módulo de resiliencia, el contenido de agua, la temperatura, etc.

Con respecto al segundo punto, la variación del módulo de resiliencia del material que constituye la subrasante se considera muy importante, ya que se ha determinado que un porcentaje muy importante de la deflexión medida en superficie del pavimento es generada en el material de esta capa.

Para predecir la variación del módulo de resiliencia, M_r , se toman en consideración dos relaciones importantes del suelo: la de grado de saturación, S_r , (o contenido de agua) contra módulo de resiliencia y la curva característica que relaciona la succión con el grado de saturación. Puesto que ambas relaciones son de gran importancia, este trabajo se centra en la variación observada en el módulo de resiliencia por cambios en el contenido de agua (o grado de saturación).

Descripción del problema

Cuando se utilizan diseños de pavimento de tipo mecanicista, el parámetro principal para evaluar el comportamiento de los materiales ante carga es una propiedad que describe la rigidez de los materiales. Este parámetro ha sido denominado "módulo de resiliencia". Esta característica de los materiales, sin embargo, no se mantiene constante después de la construcción de la estructura; sino que varía con las condiciones ambientales que se presenten en el lugar. Por tanto, es de suma importancia que de alguna forma se puedan predecir sus variaciones para que sean tomadas en consideración en el diseño de la estructura de tal forma que el pavimento funcione adecuadamente.

Varios artículos relacionados con el tema muestran que cuando los materiales de textura fina incrementan su contenido de agua, su resistencia disminuye. Este tipo de material (y por la estructuración considerada en los pavimentos de tipo flexible), forma parte ya sea de la cimentación del pavimento o de las capas de terraplén o subrasante. Por tanto, es fundamental que al llevar a cabo el diseño del pavimento se consideren las variaciones ya mencionadas. La forma en la que se hace es por medio de un modelo o relación que indica en qué cantidad se reduce o se incrementa el módulo de resiliencia, ante una ganancia o pérdida en su contenido de agua. De este modelo depende, en gran medida, el grado de aproximación entre las predicciones que realiza el modelo y las condiciones reales.

Objetivo general

Determinar la variación del módulo de resiliencia cuando el material sufre ciclos de humedecimiento o secado y si es posible determinar un modelo matemático que describa dicho comportamiento.

Objetivos específicos

- Determinar la relación entre contenido de agua (o succión) y el módulo de resiliencia.
- Determinar si el efecto es el mismo para cualquier tipo de suelo o si depende de la cantidad de material granular que contenga el mismo.

Para lograr los objetivos anteriores, se llevaron a cabo varias pruebas de módulo de resiliencia en especímenes que fueron compactados en condiciones óptimas (w_{opt} y γ_{dmax}) (con respecto a la prueba Proctor estándar) y posteriormente fueron sometidos a secado o humedecimiento.

La forma en la que se desarrolla el trabajo es la siguiente:

En el capítulo uno, se presenta la importancia del estudio mostrado y se describen las ecuaciones de diseño AASHTO, desde su concepción hasta la guía de 1993. Se menciona la evolución de la ecuación de diseño y los parámetros utilizados para tomar en cuenta el efecto del material de subrasante y cómo se llegó al uso del módulo de resiliencia. Posteriormente, se define el módulo de resiliencia y se muestran algunos estudios que han investigado la variación del módulo de resiliencia, debido cambios en contenido de agua o succión mátrica.

En el capítulo dos, se presentan los materiales estudiados, los procedimientos de prueba y los equipos utilizados en el estudio. Aquí se describen los bancos de materiales, los procedimientos utilizados para variar el contenido de agua de las muestras, así como el procedimiento para la determinación del módulo de resiliencia y la curva característica.

El capítulo tres describe los resultados obtenidos así como su análisis. En este capítulo se muestran las gráficas de módulo de resiliencia, contra contenido de agua o con otros parámetros como grado de saturación o succión.

Finalmente, se presentan las conclusiones derivadas del estudio.

1 El módulo de resiliencia y su relación con el diseño de pavimentos

1.1 Introducción

Toda estructura de pavimento está conformada por una serie de capas que deben ser compactadas a un cierto grado, para que soporten las cargas del tránsito. Como ejemplo se tiene la capa de base para la pista de pruebas del Instituto Mexicano del Transporte. En la Figura 1.1a se observa cómo la motoniveladora bandea el material para homogeneizarlo e ir dando los niveles requeridos, mientras que la Figura 1.1b indica cómo queda el material al finalizar la compactación.

(a) Bandeo del material

(b) Capa de base compactada

Figura 1.1 Material de capa de base de la pista del Instituto Mexicano del Transporte

El comportamiento que presente el pavimento, una vez construido, dependerá de varios factores entre los que se pueden mencionar el proceso constructivo, la calidad de los materiales, el control de la calidad durante la construcción, los factores climáticos (lluvia, aire, temperatura, radiación solar, etc), el tipo de vehículos que circulará, etc.

En lo que a calidad de materiales se refiere, el módulo de elasticidad (conocido como E para material de carpeta asfáltica y M_r para suelos finos y materiales

granulares) es una de las propiedades que determina la capacidad estructural (o rigidez) que el material presenta.

Al finalizar la construcción, cada una de las capas de la estructura (carpeta, base, subbase, subrasante, terraplén y terreno de cimentación) presenta un valor de módulo de elasticidad que está regido por el grado al que se compactó cada una de las capas (Figura 1.2a y 1.2b).

(a)

(b)

Figura 1.2 (a) Estructura de la pista desde terreno de cimentación hasta la subrasante; (b) Espesor de la capa de base

Debido a que la estructura está en contacto con el medio ambiente, es de esperar que tanto los periodos de lluvia como los de estiaje afecten su comportamiento; es decir, los módulos de los materiales presentarán variaciones estacionales. Por ejemplo, el material que forma la carpeta se reblandece cuando la temperatura se incrementa, y se rigidiza en caso contrario. De igual forma, los suelos y materiales granulares de las capas restantes presentarán dicha variación por cambios; no de temperatura, pero sí en el contenido de agua. Estos cambios son consecuencia de la filtración de agua hacia la estructura, ya sea por los acotamientos o por la superficie; si la carpeta presenta agrietamiento por fatiga o por cambios de temperatura. Aun cuando sean tomadas todas las previsiones para que esto no suceda (con la construcción de las cunetas, como lo muestra la Figura 1.3)), no es posible asegurar que no habrá flujo de agua hacia los materiales, o fuera de ellos (desecación).

Figura 1.3 Construcción de cunetas para desalojar el agua y evitar que se introduzca a la estructura de pavimento

Como no puede asegurarse que los materiales vayan a mantener sus propiedades en el tiempo -es decir, sus valores de módulo de resiliencia inicial- habrá que preguntarnos cómo va a variar esta propiedad si el suelo se humedece o se seca. En otras palabras, ¿qué pasará con el módulo después de que se presente una lluvia o una época de estiaje? o más aún ¿qué pasará con el módulo cuando se presenten varios ciclos de humedecimiento y secado? Todo esto constituye una serie de trayectorias de humedecimiento y secado que los materiales sufren y que es necesario tomar en cuenta en el diseño de pavimentos para poder llegar a construir estructuras con una vida útil más prolongada y que proporcionen seguridad y confort al usuario que transita sobre ellas.

1.2 Consideración del factor climático en las guías de diseño AASHTO

Desde épocas muy remotas, se ha sabido que un material expuesto al agua presenta un cambio en sus propiedades mecánicas. En respuesta a ello, los métodos de diseño propuestos desde hace ya varios años han tratado de que esta característica se refleje en los espesores de los materiales colocados en la estructura (materiales de textura fina y granulares). Sin embargo, es importante mencionar que los materiales con mayor cantidad de partículas finas (material que

pasa la malla No. 200) son los que se ven más afectados al experimentar una variación en su contenido de agua. Esto se ha reflejado en los métodos de diseño AASHTO que anteceden a la nueva guía de diseño para pavimentos nuevos y rehabilitados (AASHTO 2002) y que se presentan a continuación.

1.2.1. Guía AASHTO 1961

La primera guía de diseño de pavimentos AASHTO se basó en los resultados del tramo de prueba AASHO localizado en Ottawa, Illinois (Huang, 2004). Después de terminar el monitoreo se analizó la información; de esto se obtuvo la ecuación de diseño que relaciona el número de ejes equivalentes (que soporta el pavimento) con el número estructural y el nivel de servicio. La relación mencionada fue expresada con la ecuación 1.1:

$$\log W_{18} = 9.36 \log(SN+1) - 0.20 + \frac{\log[(4.2-p_t)/(4.2-1.5)]}{0.4 + 1094/(SN+1)^{5.19}}$$
(1.1)

Donde: $W_{18} = n$ úmero de ejes equivalentes de 8.2 toneladas SN = número estructural $p_t = nivel de servicio final$

Como se puede observar, la ecuación no incluye ningún parámetro que tome en cuenta condiciones de materiales diferentes a los utilizados en el tramo de prueba; es decir, la ecuación fue desarrollada únicamente para las condiciones de estudio, de las que se puede resaltar el uso de un solo tipo de material de subrasante (Christopher, et al., 2006).

1.2.2. Guía AASHTO 1972

La guía de diseño de pavimentos de 1972 (provisional) fue el primer intento de incorporar condiciones diferentes a las usadas en el tramo de prueba AASHO. Por ejemplo, incluyó el valor de soporte del suelo (S_i) para reflejar suelos de cimentación diferentes a los del tramo de prueba. Su valor fue considerado entre 1 y 10; el valor de 3 correspondía a la arcilla limosa (material de cimentación del tramo de prueba) y 10 para material formado por roca triturada (Christopher, et al., 2006).

Para tomar en cuenta las condiciones ambientales de otras regiones, fue agregado a la ecuación un factor regional, R, cuyos valores quedan resumidos en la Tabla 1.1 (el valor promedio era 1.0).

Tabla 1.1Valores de R según la guía AASHTO 1972

Valores recomendados de R (AASHTO, 1972)					
Material de cimentación	Parámetro R				
Congelamiento hasta 13 cm o más (invierno)	0.2 a 1.0				
Seco (verano y otoño)	0.3 a 1.5				
Húmedo (descongelamiento en primavera)	4.0 a 5.0				

La ecuación (1.1), por tanto, fue modificada y tomó la siguiente forma:

$$logW_{18} = 9.36log(SN+1) - 0.20 + \frac{log[(4.2-p_t)/(4.2-1.5)]}{0.4 + 1094/(SN+1)^{5.19}} + log\left(\frac{1}{R}\right) + 0.372(S_i - 3.0)$$
(1.2)

En donde, S_i es el valor de soporte del suelo y R es el factor regional. Los demás parámetros son los ya mencionados para la ecuación (1.1).

1.2.3. Guía AASHTO 1986

En 1986 fueron realizadas nuevas modificaciones a la guía provisional de 1972. Los nuevos cambios incluyeron el uso de factores para tomar en cuenta la confiabilidad; con respecto al material que forma la subrasante, éste fue caracterizado por medio del módulo de resiliencia que es una medida de la rigidez del material tomando en consideración un comportamiento no lineal. El valor de módulo de resiliencia efectivo utilizado en la ecuación de diseño puede ser evaluado a partir de valores estacionales como aparece a continuación.

Considere que conoce la variación mensual del módulo de resiliencia como lo muestra la Tabla 1.2. A partir de estos valores y utilizando la ecuación (1.3) se determina el valor del daño relativo. Una vez que se conoce este valor, se determina el daño relativo promedio y finalmente el módulo de resiliencia efectivo, como lo muestran los cálculos de la Tabla 1.2.

$$M_{r} = \left[\frac{1.18 \times 10^{8}}{\overline{u}_{f}}\right]^{-2.32}$$
(1.3)

Mes	Mr	Daño	Daño relativo promedio
	(psi)	relativo, u _f	$\overline{u}_{f} = 25.30/12 = 2.11$
Enero	15900	0.02	
Febrero	27300	0.01	Por tanto, el módulo de
Marzo	38700	0.00	resiliencia efectivo es:
Abril	50000	0.00	
Mayo	900	16.52	
Junio	1620	4.22	
Julio	2340	1.80	$\begin{bmatrix} 1 & 18 \\ 10^8 \end{bmatrix}^{-2.32}$
Agosto	3060	0.97	$M_r = \left \frac{1.18 \times 10}{2.14} \right = 2185 \text{psi}$
Septiembre	3780	0.59	
Octubre	4500	0.39	
Noviembre	4500	0.39	
Diciembre	4500	0.39	
	$\sum u_f =$	25.30	

Tabla 1.2Cálculo del módulo de resiliencia efectivo a partir de valores estacionales

La ecuación de diseño que apareció en la guía AASHTO de 1986 fue la siguiente:

$$\log W_{18} = 9.36 \log(SN+1) - 0.20 + \frac{\log[(4.2-p_t)/(4.2-1.5)]}{0.4 + 1094/(SN+1)^{5.19}} + 2.32 \log M - 8.07 \quad (1.4)$$

Donde:

M_r = módulo de resiliencia (valor calculado como se mostró en la Tabla 1.2)

Es importante resaltar que en las modificaciones antes mencionadas, las variaciones en módulo de resiliencia sólo son tomadas en cuenta para el material que forma la subrasante. Por otro lado, para el caso de los materiales de base o subbase se hace uso de los coeficientes de capa (a_i) y los coeficientes de drenaje (m_i) con los cuales se considera la rigidez del material y su exposición a contenidos de agua cerca de la saturación, respectivamente.

En la guía de diseño antes mencionada, aparece por primera vez el parámetro módulo de resiliencia; por lo que es conveniente definirlo.

Para llevar a cabo el diseño estructural de un elemento, se requiere conocer cómo será su respuesta ante la solicitación a la que estará sujeto. En el caso de un pavimento, las cargas del tránsito que circularán por dicha vía constituyen la solicitación. Hace algunos años, la propiedad para caracterizar los materiales era el valor relativo de soporte, propiedad que por la forma en la que es determinada no simula las condiciones a las que estará expuesto el material en campo. Por

esta razón, en 1955, Seed introdujo el concepto módulo de resiliencia; el cual fue definido como la relación entre el esfuerzo desviador y la deformación recuperable. Este parámetro se determina a partir de una prueba de carga cíclica; como ecuación se expresa de la siguiente forma:

$$M_{r} = \frac{\sigma_{d}}{\varepsilon_{r}}$$
(1.5)

En donde: σ_d = esfuerzo desviador ϵ_r = deformación recuperable

Lo anterior puede ser explicado como sigue:

Primeramente, se aplica al espécimen una carga de cierta amplitud (que está relacionada con la carga a la que va a estar sujeto el material el campo) durante un cierto número de ciclos. Durante la aplicación de ésta, la deformación presentada en el espécimen es de dos tipos: una parte que es recuperable y la otra que es permanente (Figura 1.4b). Sin embargo, al llegar a un cierto número de ciclos toda la deformación es recuperable; en ese momento se dice que el material está en un estado elástico y es en esta condición donde se calcula el módulo de resiliencia (Figura 1.4a).

Figura 1.4 (a) Ciclos aplicados para un nivel de carga en una prueba de módulo de resiliencia; (b) Diagrama esquemático de la deformación plástica y recuperable en un ciclo de carga

1.2.4. Guía AASHTO 1993

En esta guía de diseño, sólo fueron incluidos los cambios relacionados con la rehabilitación de pavimentos rígidos y flexibles. Con respecto a parámetros geotécnicos ya establecidos en 1986, no hubo ningún cambio; es decir, la ecuación de diseño siguió siendo la (1.3).

1.3 Guía de diseño AASHTO para pavimentos nuevos y rehabilitados (guía 2002)

Esta guía es de tipo empírico-mecanicista. Pero ¿Cómo se define el término mecanicista?

Una aproximación mecanicista trata de explicar los fenómenos haciendo referencia a las causas físicas. Por ejemplo, -en el pavimento- los fenómenos son los esfuerzos, las deformaciones y las deflexiones; las causas son el tránsito, los materiales y el medio ambiente. Entonces, un método de diseño mecanicista se define como aquél que involucra métodos numéricos para calcular esfuerzos, deformaciones y deflexiones en un sistema multicapa cuando está sujeto a cargas externas, efectos de humedad y temperatura. Además, puede transformar los cálculos analíticos (respuesta del pavimento) a comportamiento.

En un diagrama de flujo lo anterior queda representado como lo muestra la Figura 1.5.

Figura 1.5 Método de diseño empírico-mecanicista

Como se observa en el diagrama anterior; al llevar a cabo el análisis de esfuerzos y deformaciones, se requieren los módulos de cada uno de los materiales. Sin embargo, para tomar en cuenta su variación con respecto al tiempo, la guía de diseño hace uso del modelo climático integrado mejorado (por sus siglas en inglés EICM) para evaluar tanto los perfiles de temperatura en la carpeta asfáltica como los perfiles de contenido de agua de la capa subrasante. Una vez que se han determinado los perfiles de contenido de agua, la guía de diseño hace uso del siguiente modelo para determinar el módulo de resiliencia en cualquier instante:

$$M_{r} = 10^{a + \frac{b - a}{1 + EXP(\beta + k_{m}(S - Sopt))}} \cdot M_{ropt}$$
(1.6)

Donde:

a = valor mínimo de log $\frac{M_r}{M_{ropt}}$ b = valor máximo de log $\frac{M_r}{M_{ropt}}$ k_m = parámetro de regresión

 $(S-S_{opt})$ = variación del grado de saturación con respecto al obtenido en condiciones óptimas

La representación gráfica de la ecuación anterior se muestra en la Figura 1.6.

Figura 1.6

Variación del módulo de resiliencia con respecto al cambio del grado de saturación (tomada de la guía empírico-mecanicista para pavimentos nuevos y rehabilitados)

El modelo anterior fue obtenido al llevar a cabo un estudio bibliográfico de investigaciones en donde se determinó el efecto de la variación del módulo de

resiliencia con respecto a los cambios en contenido de agua. A continuación se presentan algunos estudios que investigaron dicho comportamiento.

Soliman y Shalaby (2011) publicaron datos para diferentes tipos de suelos (dos arcillas, dos arcillas arenosas y dos arenas limosas). Los especímenes de este estudio fueron compactados con un contenido de agua óptimo respecto a la prueba Proctor estándar y a partir de ahí se variaron los contenidos de agua para tener valores en la rama seca y en la rama húmeda. Las gráficas obtenidas aparecen en las Figuras 1.7, 1.8 y 1.9.

Figura 1.7 Módulo de resiliencia para arcilla (Soliman y Shalaby, 2011)

Figura 1.8 Módulo de resiliencia para arcilla arenosa (Soliman y Shalaby, 2011)

Figura 1.9 Módulo de resiliencia para limos (Soliman y Shalaby, 2011)

Si los datos anteriores son representados en una sola gráfica, se observa que aparentemente existe una correlación lineal entre el contenido de agua y el módulo de resiliencia; sin embargo, a medida que los suelos presentan una cierta cantidad de arena (arena limosa o limo arenoso), la variación en módulos de resiliencia -cuando se incrementa el contenido de agua- es muy pequeña y la tendencia ya no es lineal como la que se presenta para las arcillas y los limos francos (Figura 1.10).

Figura 1.10 Módulo de resiliencia para los seis suelos (Soliman y Shalaby, 2011)

En otro trabajo llevado a cabo por Khoury et al. (2009), se estudió el efecto de las variaciones del contenido de agua en el módulo de resiliencia para tres suelos (dos clasificados como CL y uno como CH). Las condiciones estudiadas fueron las siguientes:

- Se compactó 4 % arriba del óptimo y luego se secó
- Se compactó 4 % por debajo del óptimo y se humedeció
- Se compactó en el óptimo y luego secó 4 % abajo del óptimo
- Se compactó en el óptimo y se humedeció 4 % arriba del óptimo

Con los resultados obtenidos (Figura 1.11) se propuso que el modelo para la variación del módulo de resiliencia con respecto a la variación en el contenido de agua (ecuación 1.6) fuera modificado de tal forma que el factor k_m no tomara un valor constante de 6.1324, sino que se expresara con la ecuación 1.7

 $k_{m} = 0.375^{*}IP$

(1.7)

Donde:

 k_m = Parámetro de regresión IP = Índice plástico (%)

Figura 1.11 Módulo de resiliencia contra (S-S_{opt}) para los tres suelos estudiados (Khoury et al., 2009)

Sawangsuriya et al. (2009), por su parte estudiaron la variación del módulo de resiliencia con respecto al valor de succión mátrica impuesta en los especímenes. En este trabajo, ensayaron cuatro suelos clasificados como ML (1 suelo), CL (2 suelos) y un suelo clasificado como CH. Prepararon las muestras a contenido de agua óptimo y a porcentajes de compactación de 98 y 103 % con respecto a la prueba Proctor estándar.

Después de haber preparado los especímenes, algunos de ellos fueron ensayados en condiciones óptimas. En otros especímenes, los valores de succión mátrica fueron controlados a valores de 154 y 350 kPa, usando la técnica de translación de ejes. Una vez que alcanzaron el equilibrio, realizaron la prueba de módulo de resiliencia y posteriormente determinaron la succión usando sensores de disipación térmica. Los valores determinados con estos sensores fueron los utilizados en el análisis, ya que la técnica de traslación de ejes reportó valores bajos con respecto a los impuestos.

De los resultados obtenidos, se observó que al graficar el contenido de agua volumétrico contra módulo de resiliencia se obtenían tendencias aproximadamente lineales, como apareció en la Figura 1.10. Además, como en esta investigación se utilizaron dos grados de compactación, también se pudo evaluar el efecto de esta variable. Los resultados indicaron que el grado de compactación no tiene mayor efecto en el módulo de resiliencia (Figura 1.12).

Figura 1.12 Módulo de resiliencia contra contenido de agua gravimétrico (Sawangsuriya et al., 2009)

Los resultados de este estudio también fueron reportados en gráficas de succión contra módulo de resiliencia (Figura 1.13) y de succión contra la relación de módulo (Figura 1.14). Las gráficas mencionadas muestran que al parecer existe una relación única con un cierto grado de variación con respecto a la media.

Figura 1.13 Módulo de resiliencia contra succión mátrica (Sawangsuriya et al., 2009)

Figura 1.14

Módulo de resiliencia normalizado (con respecto al M_r en el contenido de agua óptimo) contra succión mátrica (Sawangsuriya et al., 2009)

Como se pudo apreciar, las investigaciones a las que se hace referencia en los párrafos anteriores han sido desarrolladas por los autores, con el objetivo de analizar la variación del módulo de resiliencia con el cambio en el contenido de agua. Particularmente, en el presente trabajo se llevó a cabo una investigación similar. En los siguientes capítulos se muestran todos los detalles de procedimientos, así como los resultados obtenidos.

2 Materiales estudiados y procedimientos de prueba

2.1 Descripción de los materiales utilizados

En muchos proyectos de investigación, hay quienes utilizan materiales ideales o materiales que no son representativos de los utilizados en los proyectos reales. Por esta razón, en esta investigación se buscó que los suelos en estudio fueran lo más representativo de aquellos utilizados en proyectos carreteros.

En las fechas en las que inició este proyecto se llevó a cabo la construcción de la pista de pruebas del Instituto Mexicano del Trasporte, la misma que se construyó de acuerdo con la sección que se muestra en la Figura 2.1.

Por otro lado, es importante señalar que cuando una obra carretera es construida y en el terreno de cimentación se encuentran materiales arcillosos, en algunos casos éstos se retiran por ser considerados material de desperdicio o en otras ocasiones se estabilizan con algún producto que mejore sus propiedades. Sin embargo, es útil que se conozcan sus propiedades y el por qué se consideran como desperdicio. Por tanto, en esta investigación se estudiaron tres materiales, los que se colocaron en el terraplén y en la subrasante de la pista de pruebas del Instituto Mexicano del Transporte (limo de baja compresibilidad y arena limosa) y una arcilla de las que generalmente se encuentran en el Estado de Querétaro (Figura 2.2).

(C)

Figura 2.2

(a) Banco de materiales MISHA (Sanfandila, Pedro Escobedo); (b) Material obtenido de una excavación localizada en la salida a Tlacote, Querétaro; (c) Banco en que se extrajo el material para la subrasante (Banco Lucio Fajardo, localizado en el municipio de Los Cues)

Posterior al muestreo, los materiales se cribaron por la malla No. 4, y se secaron a temperatura ambiente para finalmente cuartearlos y almacenarlos en costales.
2.2 Procedimientos de prueba

2.2.1. Propiedades índice

Antes de llevar a cabo la determinación de las propiedades mecánicas de cada suelo, se determinaron las propiedades índice de acuerdo con los procedimientos ASTM. Estos incluyeron los procedimientos de límites de consistencia (ASTM D4318, peso específico relativo de sólidos (ASTM D854) y material más fino que para la malla No. 200 (ASTM D 1130).

2.2.2. Módulo de resiliencia

2.2.2.1. Procedimiento de prueba

El protocolo utilizado en el estudio corresponde al protocolo NCHRP 1-28A denominado "Determinación del módulo de resiliencia para diseño de pavimentos flexibles".

Para llevar a cabo este tipo de prueba, se requiere de un equipo triaxial capaz de aplicar cargas en forma cíclica y que además cuente con los sensores adecuados para determinar las deformaciones que se presenten en el espécimen.

Para las pruebas que se llevaron a cabo en este trabajo, se utilizó el equipo triaxial cíclico que se muestra en la figura 2.3a.

La carga se aplica con una función senoidal con un desfase de 270° (Figura 2.3b); el tiempo de aplicación de la carga es de 0.2 de segundo con un período de descanso de 0.8 de segundo. Esto se repite para el número de ciclos que se requieran aplicar al espécimen.

En la prueba se aplican una serie de esfuerzos desviadores así como presiones de confinamiento. La Tabla 2.1 indica estos valores según el protocolo NCHRP 1-28A.

Figura 2.3

(a) Equipo triaxial para determinar el módulo de resiliencia; (b) Vista de la aplicación de la carga cíclica al espécimen contra el tiempo

Tabla 2.1

Esfuerzos de confinamiento y desviadores aplicados en la prueba de módulo de resiliencia según el protocolo NCHRP 1-28A

Secuencia	Confinamiento,	Esfuerzo de	Esfuerzo	No. de
No.	σ ₃ (kPa)	contacto (kPa)	cíclico(kPa)	repeticiones
0	27.6	5.5	48.3	1000
1	55.2	11.0	27.6	100
2	41.4	8.3	27.6	100
3	27.6	5.5	27.6	100
4	13.8	2.8	27.6	100
5	55.2	11.0	48.3	100
6	41.4	8.3	48.3	100
7	27.6	5.5	48.3	100
8	13.8	2.8	48.3	100
9	55.2	11.0	69.0	100
10	41.4	8.3	69.0	100
11	27.6	5.5	69.0	100
12	13.8	2.8	69.0	100
13	55.2	11.0	96.6	100
14	41.4	8.3	96.6	100
15	27.6	5.5	96.6	100
16	13.8	2.8	96.6	100

2.2.2.2. Preparación de los especímenes para una trayectoria de secado o de humedecimiento

El primer paso para llevar a cabo la elaboración de los especímenes fue obtener las curvas de compactación para determinar el contenido de agua óptimo y el peso volumétrico seco máximo con respecto a la prueba Proctor estándar. Estos valores fueron la condición a la que se compactaron todas las muestras ensayadas.

Para la preparación de los especímenes, se agregó el agua necesaria al suelo, de tal forma que se alcanzara el contenido de agua óptimo. Después de mezclar el suelo con el agua y obtener una mezcla homogénea (Figura 2.4a), ésta se colocó en una bolsa de plástico para dejarla curar durante 24 horas. Posteriormente, se calculó el material que debía ser colocado en el molde de tal forma que se alcanzara el peso volumétrico seco.

El espécimen se compactó en ocho capas en un molde partido de 7.1 cm de diámetro y 14.4 cm de altura (Figura 2.4b). Este molde consta de una base y un cilindro dividido transversalmente por la mitad que se sujeta a la base con cuatro tornillos. La elaboración del espécimen dentro del molde se realiza mediante la compactación de ocho capas de material. La densidad de cada capa se controla mediante la altura de cada una de ellas.

(a)

(b)

Figura 2.4

(a) Proceso de humectación y homogeneización de la muestra antes de compactar; (b) Muestra compactada en el molde de 7.1 cm por 14.4 cm

Una vez que se compactaron los especímenes, y para simular el humedecimiento o el secado que pudiera presentarse en el material (una vez colocado en campo), se permitió que algunos de ellos se secaran al aire, por un determinado tiempo, para que se redujera el contenido de agua (incremento de la succión). Por otro lado, a los especímenes que debían someterse a un incremento en el contenido de agua se les colocó un disco poroso en la parte inferior, se envolvieron con plástico, para evitar la pérdida de agua (Figura 2.5a) y posteriormente el conjunto disco-muestra se colocó en un contenedor al que se le agregó agua. La muestra absorbió agua por capilaridad (Figura 2.5b).

Tanto los especímenes, que se secaron como los que se humedecieron, se dejaron expuestos al agua o al aire por diferentes periodos, de tiempo de tal forma que las variaciones en contenido de agua cubrieran un rango amplio.

(a)

•

(b)

Figura 2.5 (a) Muestra después de compactarse y envolverse en plástico junto con la piedra porosa; (b) Muestras colocadas en el contenedor para que absorbieran agua por capilaridad

La Figura 2.6 muestra en forma esquemática dos trayectorias en las que se ensayaron los especímenes. La Figura 2.6a corresponde a una muestra que se compactó en el óptimo y se humedeció hasta un cierto grado, lo opuesto corresponde a la figura 2.6b.

Figura 2.6 (a) Trayectoria de humedecimiento de una muestra; (b) Trayectoria de secado de una muestra

Cabe hacer notar que después de que las muestras fueron humedecidas o secadas al aire, se envolvieron en plástico nuevamente y se colocaron en un contenedor por al menos dos semanas para que el agua se distribuyera en toda la muestra de forma uniforme.

2.2.2.3. Preparación de los especímenes para dos trayectorias (de secado y de humedecimiento o de humedecimiento y secado)

La diferencia de las muestras que fueron ensayadas con este procedimiento es que no sólo siguieron una trayectoria de secado o humedecimiento, sino que se compactaron en el óptimo y a partir de ahí se humedecieron o secaron hasta un cierto punto y después se regresaron a la condición óptima. La Figura 2.7 muestra en forma esquemática este procedimiento. Cabe aclarar que aunque las flechas están dibujadas en forma horizontal, en realidad no es así; ya que tanto las muestras que se secan como las que se humedecen experimentan cambio de volumen, y por tanto el peso volumétrico se incrementa o se reduce.

Figura 2.7

(a) Esquema de una muestra que sufre un ciclo de humedecimiento; (b) Esquema de una muestra que sufre un ciclo de secado

2.2.3. Resistencia a la compresión sin confinar

Como la prueba de módulo de resiliencia es no destructiva; después de ésta, todos los especímenes se ensayaron en compresión no confinada.

El procedimiento consistió en aplicar al espécimen carga con una velocidad de 1.2 %/min hasta alcanzar la falla (la norma ASTM D 2166-06 especifica una velocidad en el rango de 0.5 a 2 %/min).

Durante la aplicación de la carga, el programa CATS muestra una gráfica en tiempo real de la carga aplicada contra la deformación del espécimen; de tal forma que cuando la falla es inminente, la prueba se termina y se desmonta el espécimen para posteriormente disgregarlo y determinar su contenido de agua final.

2.2.4. Curva característica (SWCC)

La preparación de las muestras para determinar la curva característica depende del tipo de procedimiento que se utilice. En este trabajo se utilizaron las celdas de presión para determinar dicha relación. El procedimiento general se describe a continuación:

- 1. Se adiciona el agua requerida a la muestra y se deja equilibrar por 24 horas.
- 2. Se determina la cantidad de material a colocar en el anillo, para alcanzar el peso volumétrico requerido y se compacta (Figura 2.8a).
- 3. Se enrasa el material que sobresale del anillo y se pesa (Figura 2.8b).

 Posteriormente, si se requiere iniciar la prueba con un grado de saturación alto, la muestra se coloca sobre un disco poroso y después se permite que absorba agua por capilaridad (Figura 2.8c).

(a)

(b)

(C)

Figura 2.8

(a) Compactación de la muestra en tres capas; (b) Muestra enrasada; (c) Muestra en proceso de saturación

- 5. Cuando la muestra ha absorbido agua durante varios días, se coloca sobre el disco de cerámica de alto valor de entrada de aire que se encuentra en la base de la celda de presión (Figura 2.9a).
- 6. En la parte superior de la muestra, se coloca un papel filtro, un disco poroso y una placa metálica mediante la cual se aplica la sobrecarga al espécimen.
- 7. Se coloca la tapa de la celda y se atornilla.
- 8. Se colocan masas sobre la placa de carga, para compensar la fricción que presenta el vástago (Figura 2.9b); además, se toman las lecturas iniciales de la altura del agua de las buretas así como la altura de la placa de carga. Si se requiere evaluar la curva característica a un cierto valor de sobrecarga, se colocan las pesas requeridas.
- 9. El siguiente paso es incrementar el primer valor de presión de aire que también será igual al primer valor de succión, puesto que la presión de agua es igual a la presión atmosférica (Figura 2.9c).

(c)

Figura 2.9

(a) Colocación de la muestra sobre el disco de cerámica; (b) Compensación la fricción del vástago de carga; (c) Aplicación de la presión de aire

- 10. Las lecturas en las buretas se toman por un periodo en el que se muestre flujo de agua. Cuando se equilibra la succión; es decir, cuando no se presenta más flujo de agua, se incrementa el siguiente valor de presión de aire (succión) y se continúa tomando lecturas hasta que se tiene la condición antes mencionada.
- 11. Cuando se han aplicado todas las presiones de aire requeridas, se desensambla la celda, se retira la muestra y se determina su peso húmedo.
- 12. Posteriormente, se coloca en el horno durante 24 horas para determinar su peso seco.
- 13. Una vez que se han obtenido todos los datos anteriores, se retrocalculan los contenidos de agua y los grados de saturación para cada valor de succión (presión de aire) impuesto.
- 14. Finalmente, se grafican los contenidos de agua o grado de saturación contra el valor de succión.

3 Análisis de resultados

3.1. Propiedades índice

En este estudio, se investigó el comportamiento de tres materiales. La tabla 3.1 muestra las propiedades índice de estos suelos.

Lugar de muestreo	Clas.	Límite	s de consis	stencia	Gs	% de	% de
	SUC	LL	LP (%)	IP		finos	arena
	S	(%)		(%)			
Salida a Tlacote, Querétaro	СН	72	26	46	2.59	92.9	7.1
Banco MISHA (Sanfandila, Pedro Escobedo)	ML	44	33	11	2.74	87.0	13.0
Banco Lucio Fajardo (Los Cues)	SM	NP	NP	NP	2.52	37.0	63.0
Noto							

Tabla 3.1Propiedades índice de los suelos estudiados

LL = Límite líquido; LP = Límite plástico, IP =Índice de plasticidad; $G_s =$ Peso específico relativo de sólidos; SUCS = Sistema Unificado de Clasificación de Suelos

3.2. Curvas de compactación

La curva de compactación Proctor estándar es otra relación fundamental en el desarrollo de las investigaciones de laboratorio, ya que la humedad óptima y el peso volumétrico seco máximo (w_{opt} , γ_{dmax}), o un porcentaje de dichos parámetros, es lo que se considera como base para la preparación de los especímenes. Las Figuras 3.1, 3.2 y 3.3 muestran las curvas de compactación Proctor estándar de los tres suelos estudiados.

Figura 3.1 Curva de compactación de la arcilla de alta compresibilidad, CH

Figura 3.2 Curva de compactación de la arena limosa, SM

Figura 3.3 Curva de compactación de del limo de baja compresibilidad, ML

En la Tabla 3.2 se resumen las características de compactación de los tres suelos.

Tabla 3.2Características de compactación de los suelos estudiados

	Características de compactación						
Tipo de suelo	w _{opt} (%)	γ _{dmax} (kN/m³)					
Arcilla de alta compresibilidad, CH	33.0	12.56					
Limo de baja compresibilidad, ML	32.0	12.98					
Arena limosa, SM	24.3	14.18					

3.3. Curvas características

El análisis de los valores de módulo de resiliencia se puede presentar como relaciones entre este parámetro y el contenido de agua o grado de saturación; sin embargo, otra de las características del suelo generalmente utilizadas para relacionarlo es la succión. Para el estudio que se presenta en este documento, la succión de los especímenes a la que se hace referencia, no se midió directamente de éstos; sino que se infirió a través de la curva característica como se muestra en la Figura 3.4.

Figura 3.4 Determinación de la succión de los especímenes tomando como base su grado de saturación

Cabe mencionar que los especímenes a los que se les determinó la curva característica se prepararon con un contenido de agua óptimo y peso volumétrico seco máximo (con respecto a la prueba Proctor estándar). Las curvas características obtenidas para el suelo CH, ML y SM en la Figura 3.5, de ésta se observa que el suelo que contiene un mayor contenido de arena (SM) es el que drena el agua de sus poros con una mayor rapidez; es decir, su curva característica es la que se encuentra localizada en la parte inferior. En la gráfica se muestran tanto los datos de laboratorio como la curva de mejor ajuste obtenida con el modelo de proporcionalidad natural.

Fue a partir de estas curvas características que se dedujeron los valores de succión de los especímenes.

Figura 3.5 Curvas características de los tres suelos estudiados

3.4. Módulos de resiliencia

3.4.1. Muestras compactadas en el óptimo y que se humedecen o se secan (una trayectoria)

En las Tablas 3.3 a 3.11 se resumen las características de los especímenes después de la compactación, antes de ensayarse y los valores de módulo de resiliencia obtenidos, respectivamente. Las Tablas 3.3, 3.4 y 3.5 corresponden a la arcilla CH, la 3.6, 3.7 y 3.8 son para el limo de alta compresibilidad, ML; y de la 3.9 a 3.11 corresponden a la arena limosa

Espécimen	Proceso	d (cm)	h (cm)	Peso	W	γm	γd	Sr	θ (%)
No.		. ,		(g)	(%)	(kN/m^3)	(kN/m ³)	(%)	()
141	2 días de secado	7.073	14.351	964.34	32.7	16.777	12.643	83.9	42.1
143	2 días de secado	7.62	14.367	972.36	32.6	16.951	12.783	85.5	42.5
136	5 días de secado	7.076	14.354	972.35	32.6	16.899	12.744	85.0	42.4
138	5 días de secado	7.086	14.353	961.83	33.1	16.670	12.524	83.3	42.3
130	10 días de secado	7.093	14.375	970.24	32.7	16.757	12.628	83.7	42.1
131	10 días de secado	7.099	14.371	969.78	32.7	16.725	12.604	83.4	42.0
125	20 días de secado	7.093	14.356	970.77	33.9	16.788	12.538	85.5	43.3
126	20 días de secado	7.088	14.245	967.44	33.7	16.767	12.541	85.1	43.1
181	1 día de humedecimiento	7.059	14.361	962.50	33.3	16.800	12.603	84.9	42.8
182	1 día de humedecimiento	7.078	14.370	961.98	32.9	16.690	12.559	83.3	42.1
178	5 días de humedecimiento	7.083	14.359	968.22	33.1	16.788	12.613	84.5	42.6
179	5 días de humedecimiento	7.074	14.373	965.47	33.3	16.766	12.578	84.6	42.7
174	7 días de humedecimiento	7.081	14.356	969.63	32.1	16.825	12.641	84.9	42.7
176	7 días de humedecimiento	7.073	14.371	965.18	33.0	16.768	12.608	84.2	42.4
169	10 días de humedecimiento	7.071	14.337	971.91	32.0	16.935	12.830	84.5	41.8
171	10 días de humedecimiento	7.061	14.347	968.63	31.6	16.914	12.852	83.8	41.4
165	20 días de humedecimiento	7.084	14.348	968.51	32.9	16.801	12.642	84.4	42.4
166	20 días de humedecimiento	7.066	14.357	968.42	32.9	16.874	12.697	85.1	42.6
132	30 días de humedecimiento	7.077	14.369	962.48	32.6	16.705	12.598	83.0	41.9
133	30 días de humedecimiento	7.085	14.359	972.49	32.8	16.852	12.690	84.8	42.4
134	30 días de humedecimiento	7.089	14.368	971.79	32.9	16.811	12.649	84.5	42.4
115	En el óptimo	7.087	14.383	966.53	32.3	16.712	12.632	82.7	41.6
116	En el óptimo	7.099	14.375	966.25	32.9	16.660	12.535	83.0	42.0

Tabla 3.3Características de los especímenes después de haber sido compactados
(arcilla CH)

Nota: El significado de los símbolos de la tabla son:

d = Diámetro, h = Altura, w = contenido de agua, γ_m = peso volumétrico de la muestra, γ_d = peso volumétrico seco, S_r = Grado de saturación y θ = contenido de agua volumétrico

Tabla 3.4

Características de los especímenes antes de ser ensayados (arcilla CH)

Espécimen	d	h (cm)	Peso (a)	w	γd	Sr	θ (%)	W	(W-Wopt).	(Sr-Sropt).	(W-Wropt).	(θ-θroot).
No.	(cm)	(-)	(3)	(%)	(kN/m ³)	(%)	• (/•)	кРа	%	%	kPa	kPa
141	6.967	14.149	934.55	28.30	13.25	79.85	38.2	200	-4.7	-3.0	60	-3.6
143	6.995	14.168	946.91	28.70	13.26	81.09	38.8	180	-4.3	-1.7	40	-3.0
136	7.037	14.287	960.91	30.30	13.02	82.47	40.2	150	-2.7	-0.4	10	-1.6
138	7.037	14.287	948.34	29.80	12.89	79.58	39.2	190	-3.2	-3.3	50	-2.6
130	7.045	14.265	956.13	30.80	12.89	82.22	40.5	150	-2.2	-0.6	10	-1.3
131	7.054	14.230	953.70	30.40	12.90	81.22	40.0	170	-2.6	-1.6	30	-1.8
125	6.948	13.992	932.37	28.50	13.42	82.59	39.0	140	-4.5	-0.2	0	-2.8
126	6.969	14.094	937.44	29.50	13.21	82.73	39.7	140	-3.5	-0.1	0	-2.1
181	7.149	14.557	980.91	35.30	12.17	84.07	43.8	120	2.3	1.2	-20	2.0
182	7.144	14.535	977.46	35.18	12.17	83.83	43.7	130	2.2	1.0	-10	1.9
178	7.181	14.657	993.05	36.20	12.05	84.57	44.5	110	3.2	1.7	-30	2.7
179	7.152	14.614	986.22	35.78	12.14	84.74	44.3	110	2.78	1.9	-30	2.5
174	7.214	14.777	1009.2	37.96	11.88	86.36	46.0	90	4.96	3.5	-50	4.2
176	7.190	14.655	994.77	36.35	12.03	84.64	44.6	120	3.35	1.8	-20	2.8
169	7.222	14.714	1012.31	37.95	11.94	87.18	46.2	70	4.96	4.3	-70	4.4
171	7.212	14.716	1014.37	38.40	11.96	88.45	46.8	60	5.40	5.6	-80	5.0
165	7.287	14.980	1037.38	40.69	11.58	88.23	48.0	60	7.69	5.4	-80	6.2
166	7.254	14.889	1031.6	40.15	11.73	89.25	48.0	50	7.15	6.4	-90	6.2
132	7.314	15.077	1050.74	43.63	11.33	90.93	50.4	35	10.63	8.1	-105	8.6
133	7.331	15.051	1053.33	42.28	11.43	89.57	49.3	50	9.28	6.7	-90	7.5
134	7.290	14.999	1048.98	41.76	11.59	90.79	49.4	40	8.76	8.0	-100	7.6
115	7.087	14.383	966.53	32.30	12.63	82.71	41.6	140	-0.7	-0.1	0	-0.2
116	7.099	14.375	966.25	32.90	12.53	82.98	42.0	140	-0.1	0.1	0	0.2

Nota: El significado de los símbolos de la tabla son:

 ψ = Succión mátrica, (w-w_{opt}) = variación del contenido de agua con respecto al óptimo, (S_r-S_{ropt}) = Variación del grado de saturación con respecto al óptimo, (ψ - ψ _{opt}) = Variación de la succión con respecto a la succión en la condición óptima y (θ - θ _{opt}) = Variación del contenido de agua volumétrico con respecto al que se tiene en la condición óptima.

Espécimen No.					MÓDULOS DE RESILIENCIA (MPa)												
	$\sigma_3 = 14$ (k	(Pa)			$\sigma_3 = 2$	8 kPa			$\sigma_3 = 4$	1 kPa			$\sigma_3 = 4$	σ ₃ = 41 kPa			
	σ _d = 27 (kPa)	48	68	99	27	48	68	99	27	48	68	99	27	48	68	99	
141	142	124	120	126	196	162	155	155	217	183	176	172	231	198	188	182	
143	216	160	146	143	234	180	163	158	246	194	175	167	254	205	182	173	
136	113	97	94	93	134	114	110	110	147	126	122	121	158	138	132	130	
138	96	89	89	88	126	110	106	104	140	120	115	113	148	128	122	121	
130	99	94	93	95	116	110	108	109	128	120	118	119	136	129	127	128	
131	104	104	104	105	125	122	120	119	133	131	128	127	139	136	134	132	
125	156	125	121	123	211	160	151	149	229	180	170	166	240	194	183	179	
126	213	149	135	130	231	172	155	147	237	185	168	159	250	197	178	169	
181	43	43	42	39	52	49	46	42	54	52	48	44	56	54	50	46	
182	37	38	39	39	48	48	47	45	54	52	51	49	58	56	54	51	
178	68	45	40	35	78	52	45	39	82	56	48	42	84	58	51	44	
179	60	46	42	38	69	53	47	41	72	57	50	44	75	59	52	46	
174	42	32	26	21	43	34	28	23	44	35	30	24	44	36	31	26	
176	51	44	40	35	56	48	42	37	59	50	44	39	60	51	46	41	
169	63	38	31	25	70	42	34	27	74	45	37	29	81	47	38	31	
171	82	41	31	24	88	44	33	26	89	46	35	27	93	48	36	29	
165	23	18	14	12	25	20	16	13	26	21	17	23	27	22	19	19	
166	21	19	16	13	23	21	17	14	24	22	19	15	25	23	20	17	
132	22	16	13	10	23	18	15	11	24	19	16	12	25	20	18	20	
133	17	16	13	11	19	17	14	13	20	18	16	14	21	19	17	15	
134	18	18	15	11	20	19	16	13	23	21	18	19	23	22	19	15	
115	123	86	75	68	138	93	81	72	142	96	83	74	143	99	85	76	
116	121	82	70	65	136	91	77	70	138	93	80	72	141	96	82	73	

Tabla 3.5Valores de módulo de resiliencia (arcilla CH)

Nota: El significado de los símbolos de la tabla son:

 σ_3 = Presión de confinamiento y σ_d = Esfuerzo desviador

Tabla 3.6

Características de los especímenes después de haber sido compactados (limo de baja compresibilidad, ML)

Espécimen	Proceso	d (cm)	h (cm)	Peso	w	γm	γd	Sr	θ (%)
No.				(g)	(%)	(kN/m^3)	(kN/m^3)	(%)	```
81	En el óptimo	7.093	14.387	979.94	30.71	16.91	12.94	78.08	40.49
82	En el óptimo	7.093	14.374	979.80	30.94	16.92	12.92	78.51	40.76
25	3 días de secado	7.070	14.417	984.47	32.53	17.06	12.88	81.94	42.69
26	3 días de secado	7.080	14.378	983.40	32.72	17.04	12.84	82.00	42.83
29	8 días de secado	7.076	14.405	984.53	30.97	17.05	13.02	79.69	41.09
32	15 días de secado	7.079	14.411	985.79	32.40	17.05	12.88	81.65	42.53
34	15 días de secado	7.059	14.412	982.05	32.14	17.08	12.92	81.58	42.34
35	15 días de secado	7.088	14.410	980.72	32.25	16.92	12.79	80.27	42.06
37	20 días de secado	7.078	14.383	984.85	31.76	17.07	12.96	80.98	41.94
38	20 días de secado	7.086	14.401	986.71	31.27	17.04	12.98	80.06	41.38
41	30 días de secado	7.070	14.415	980.65	32.20	16.99	12.85	80.92	42.20
43	30 días de secado	7.066	14.395	976.60	31.70	16.97	12.88	79.99	41.64
48	1 día de humedecimiento	7.078	14.398	980.57	31.21	16.97	12.94	79.39	41.17
49	1 día de humedecimiento	7.069	14.410	978.24	31.78	16.96	12.87	80.07	41.71
50	1 día de humedecimiento	7.076	14.398	979.87	31.05	16.97	12.95	79.15	41.00
51	1 día de humedecimiento	7.085	14.427	977.47	31.26	16.86	12.84	78.38	40.92
53	1.1 días de humedecimiento	7.076	14.413	980.73	31.12	16.97	12.94	79.22	41.07
54	1 .1 días de humedecimiento	7.101	14.400	978.13	30.88	16.82	12.86	77.56	40.47
56	3 días de humedecimiento	7.077	14.412	979.16	30.74	16.94	12.96	78.42	40.61
57	3 días de humedecimiento	7.071	14.416	978.13	30.44	16.94	12.99	78.06	40.32
58	3 días de humedecimiento	7.084	14.438	981.69	30.49	16.92	12.97	77.89	40.31
61	7 días de humedecimiento	7.063	14.347	980.84	30.98	17.11	13.07	80.32	41.27
63	7 días de humedecimiento	7.061	14.406	980.24	29.70	17.05	13.14	77.86	39.79

Espécimen	d	h (cm)	Peso (g)	w	γd	Sr	θ (%)	ψ	(w-w _{opt}),	(Sr-Sropt),	$(\psi - \psi_{ropt}),$	$(\theta - \theta_{ropt}),$
No.	(cm)			(%)	(kN/m ³)	(%)		kPa	%	%	kPa	kPa
81	7.093	14.387	979.94	30.71	12.94	78.08	40.50	200	-1.29	-4.39	0	-0.151
82	7.093	14.374	979.80	30.94	12.92	78.51	40.76	200	-1.06	-3.96	0	0.112
25	7.063	14.375	972.60	30.87	12.94	78.57	40.73	200	-1.13	-3.89	0	0.084
26	7.076	14.385	975.70	31.04	12.91	78.62	40.86	200	-0.96	-3.84	0	0.206
29	7.039	14.339	961.74	27.8	13.23	73.83	37.49	300	-4.2	-8.64	100	-3.158
32	7.027	14.287	956.02	28.32	13.19	74.77	38.08	300	-3.68	-7.69	100	-2.570
34	7.032	14.234	955.28	28.78	13.16	75.68	38.62	300	-3.22	-6.78	100	-2.031
35	7.047	14.306	957.91	29.22	13.03	75.36	38.82	300	-2.78	-7.10	100	-1.830
37	7.016	14.268	945.72	26.38	13.31	70.88	35.78	500	-5.62	-11.58	300	-4.863
38	7.044	14.327	958.32	27.69	13.19	73.07	37.22	400	-4.31	-9.40	200	-3.429
41	7.018	14.267	940.98	26.2	13.25	69.83	35.39	550	-5.80	-12.64	350	-5.253
43	7.017	14.246	931.68	25.11	13.26	66.99	33.94	800	-6.89	-15.48	600	-6.708
48	7.124	14.463	1001.33	33.24	12.79	82.66	43.33	100	1.24	0.18	-100	2.682
49	7.118	14.475	999.32	33.73	12.72	83.11	43.75	100	1.73	0.64	-100	3.109
50	7.107	14.482	1001.44	33.19	12.84	83.16	43.43	90	1.19	0.69	-110	2.788
51	7.106	14.488	1000.9	33.08	12.84	82.91	43.30	100	1.08	0.44	-100	2.651
53	7.114	14.491	1005.02	33.07	12.86	83.16	43.36	90	1.07	0.69	-110	2.712
54	7.122	14.456	998.71	32.69	12.82	81.69	42.72	120	0.69	-0.78	-80	2.074
56	7.139	14.543	1021.88	35.09	12.74	86.73	45.59	45	3.09	4.26	-155	4.947
57	7.139	14.528	1020.01	34.94	12.75	86.41	45.42	50	2.94	3.94	-150	4.767
58	7.139	14.545	1020.06	34.57	12.77	85.76	45.00	55	2.57	3.29	-145	4.359
61	7.133	14.492	1016.86	36.16	12.65	88.09	46.63	30	4.16	5.62	-170	5.981
63	7.151	14.566	1031.90	36.04	12.72	88.71	46.73	25	4.04	6.23	-175	6.079

Tabla 3.7Características de los especímenes antes de ser ensayados (limo de baja
compresibilidad, ML)

Tabla 3.8 Valores de módulo de resiliencia (limo de baja compresibilidad, ML)

Espéc							MÓDULOS	DE RESI	LIENCIA (I	/IPa)						
No.	σ ₃ = 14 (k	Pa)			σ ₃ = 28	kPa			$\sigma_3 = 41$	kPa			$\sigma_3 = 41$	kPa		
	σ _d = 27 (kPa)	48	68	99	27	48	68	99	27	48	68	99	27	48	68	99
81	49	36	32	29	57	42	38	34	66	48	43	39	73	55	49	44
82	42	33	30	28	50	41	36	33	58	47	42	37	65	54	48	42
25	64	62	65	67	70	69	70	72	75	75	75	76	81	81	80	80
26	35	42	47	54	36	44	49	56	36	46	51	58	37	48	53	60
29	240	165	141	136	261	181	152	149	244	184	163	152	224	188	167	152
32	56	70	84	93	121	124	132	134	177	158	158	155	201	178	174	169
34	78	77	80	85	128	112	109	112	165	136	129	131	181	154	146	148
35	55	60	63	69	122	105	100	102	162	131	123	121	182	150	140	135
37	147	142	139	138	180	171	163	160	202	187	182	176	218	204	198	188
38	158	144	137	133	197	169	160	153	208	188	178	167	223	203	190	181
41	200	151	151	154	256	195	188	185	280	224	214	208	306	247	235	228
43	259	213	190	178	291	240	213	200	301	254	246	216	325	278	249	222
48	35	32	30	27	45	40	37	33	53	47	43	39	61	54	50	45
49	36	31	28	25	45	39	35	31	55	47	42	37	63	54	49	43
50	43	36	33	30	53	45	41	37	62	52	47	43	71	60	54	49
51	45	33	30	28	55	43	38	34	64	50	44	40	73	58	51	46
53	43	35	32	29	52	43	40	35	61	50	47	41	69	57	52	47
54	37	33	30	27	46	41	37	33	54	47	43	39	61	54	50	45
56	36	29	26	24	45	36	33	29	53	43	39	35	61	50	45	40
57	35	30	26	23	46	38	33	29	54	44	39	34	61	50	44	39
58	40	31	28	25	49	39	35	30	58	47	41	36	66	53	47	41
61	20	19	19	17	28	26	24	22	34	31	29	26	40	36	33	30
63	27	23	21	19	34	29	26	23	39	34	30	27	45	38	35	30

	(arena innosa, Sivi)												
Espécimen	Proceso	d (cm)	h (cm)	Peso	W (%)	$\gamma_{\rm m}$	γ_{d}	Sr (%)	θ (%)				
NU.		7.005	44.044	(g)	(%)	(KIN/III)	(KIN/III)	(%)	04.00				
23		7.085	14.314	1007.91	23.8	17.52	14.15	80.31	34.33				
24		7.085	14.330	1004.69	23.8	17.44	14.09	79.51	34.19				
20	2 días de secado	7.069	14.326	1012.05	23.9	17.65	14.25	81.98	34.72				
21	2 dias de secado	7.067	14.335	1010.14	24.0	17.62	14.21	81.79	34.77				
22	2 días de secado	7.066	14.329	1007.29	24.0	17.58	14.18	81.38	34.69				
16	5 días de secado	7.071	14.338	1017.70	24.8	17.73	14.20	84.45	35.92				
18	5 días de secado	7.057	14.317	1012.19	24.8	17.73	14.20	84.46	35.92				
7	10 días de secado	7.072	14.340	1010.89	24.4	17.60	14.15	82.33	35.20				
8	10 días de secado	7.085	14.361	1007.16	24.2	17.45	14.05	80.29	34.66				
9	10 días de secado	7.083	14.328	1007.97	24.3	17.51	14.09	81.16	34.90				
4	20 días de secado	7.061	14.320	1011.70	24.8	17.69	14.18	84.09	35.85				
6	20 días de secado	7.064	14.331	1010.77	24.6	17.65	14.16	83.24	35.53				
2	30 días de secado	7.067	14.328	999.84	24.4	17.45	14.03	80.67	34.89				
3	30 días de secado	7.077	14.317	1013.49	24.4	17.65	14.19	82.87	35.29				
35	1 día de humedecimiento	7.090	14.335	1010.37	24.5	17.51	14.06	81.52	35.13				
36	1 día de humedecimiento	7.071	14.356	1011.35	24.1	17.59	14.18	81.71	34.84				
37	1 día de humedecimiento	7.096	14.321	1011.10	24.3	17.51	14.08	81.15	34.90				
32	2 días de humedecimiento	7.057	14.344	1013.32	24.6	17.72	14.21	83.94	35.65				
33	2 días de humedecimiento	7.065	14.326	1015.18	24.7	17.73	14.22	84.23	35.77				
29	5 días de humedecimiento	7.059	14.226	1017.56	25.0	17.92	14.34	87.07	36.55				
30	5 días de humedecimiento	7.048	14.307	1005.18	24.9	17.66	14.14	83.91	35.90				
26	10 días de humedecimiento	7.074	14.319	1005.22	24.0	17.52	14.13	80.70	34.57				
27	10 días de humedecimiento	7.071	14.321	1010.85	24.2	17.63	14.19	82.27	35.02				
28	10 días de humedecimiento	7.063	14.358	1012.67	24.1	17.65	14.22	82.37	34.95				
13	20 días de humedecimiento	7.065	14.336	1010.35	24.6	17.63	14.15	83.03	35.49				
14	20 días de humedecimiento	7.071	14.317	1010.81	24.5	17.63	14.16	82.86	35.38				
15	20 días de humedecimiento	7.064	14.329	1009.77	24.4	17.63	14.17	82.71	35.26				
10	30 días de humedecimiento	7.086	14.375	1011.00	24.4	17.49	14.06	81.13	34.97				
12	30 días de humedecimiento	7.056	14.343	1001.38	24.6	17.51	14.06	81.71	35.25				
38	En el óptimo	7.083	14.338	1014.44	23.98	17.61	14.21	81.66	34.73				
39	En el óptimo	7.084	14.352	1016.31	24.08	17.62	14.20	81.96	34.86				
40	En el óptimo	7.075	14.322	1019.72	24.26	17.77	14.29	83.86	35.35				

Tabla 3.9Características de los especímenes después de haber sido compactados
(arena limosa, SM)

Tabla 3.10
Características de los especímenes antes de ser ensayados (arena limosa,
SM)

Espécimen	d	h (cm)	Peso (g)	w	γd	Sr	θ (%)	ψ	(w-w _{opt}),	(Sr-Sropt),	$(\psi - \psi_{ropt}),$	$(\theta - \theta_{ropt}),$
No.	(cm)			(%)	(kN/m ³)	(%)		kPa	%	%	kPa	kPa
23	7.083	14.328	998.13	22.80	17.34	14.12	32.82	110	-1.5	-7.29	50	-1.94
24	7.073	14.338	993.82	22.50	17.30	14.12	32.40	120	-1.8	-8.25	60	-2.37
20	7.067	14.366	1002.12	22.10	17.44	14.29	32.19	110	-2.2	-7.58	50	-2.58
21	7.075	14.373	1008.57	22.24	17.51	14.32	32.47	110	-2.06	-6.64	50	-2.29
22	7.072	14.370	995.60	21.86	17.30	14.20	31.64	150	-2.44	-9.52	90	-3.13
16	7.064	14.379	1001.86	22.05	17.44	14.29	32.12	120	-2.25	-7.74	60	-2.65
18	7.078	14.367	997.79	22.30	17.31	14.15	32.18	130	-2.0	-8.54	70	-2.59
7	7.066	14.341	990.31	21.50	17.27	14.21	31.16	170	-2.8	-10.51	110	-3.61
8	7.078	14.349	989.44	21.70	17.19	14.12	31.25	170	-2.6	-10.94	110	-3.52
9	7.076	14.354	994.58	22.30	17.28	14.13	32.12	140	-2.0	-8.84	80	-2.64
4	7.038	14.350	977.17	19.91	17.17	14.31	29.06	230	-4.39	-14.78	170	-5.71
6	7.074	14.354	981.13	20.51	17.06	14.15	29.59	230	-3.79	-14.59	170	-5.17
2	7.049	14.314	961.21	19.50	16.88	14.12	28.08	310	-4.8	-18.35	250	-6.69
3	7.056	14.354	984.80	20.7	17.21	14.26	30.09	200	-3.6	-12.75	140	-4.68
35	7.085	14.389	1018.84	24.83	17.62	14.11	35.72	50	0.53	-0.60	-10	0.95
35	7.073	14.441	1019.84	24.86	17.63	14.12	35.78	50	0.56	-0.39	-10	1.02
37	7.092	14.397	1019.25	25.13	17.58	14.05	35.99	50	0.83	-0.47	-10	1.22
32	7.099	14.421	1024.22	25.61	17.60	14.01	36.58	35	1.31	0.61	-25	1.82
33	7.107	14.408	1025.89	25.60	17.60	14.01	36.58	35	1.3	0.64	-25	1.81
29	7.069	14.365	1024.72	25.17	17.83	14.24	36.54	30	0.87	2.38	-30	1.78
30	7.075	14.416	1020.34	26.20	17.66	13.99	37.37	30	1.9	2.28	-30	2.61
26	7.087	14.433	1019.20	26.30	17.56	13.90	37.27	35	2.0	1.33	-25	2.51
27	7.100	14.407	1027.70	26.60	17.67	13.96	37.86	25	2.3	3.11	-35	3.09
28	7.088	14.416	1025.08	25.70	17.67	14.06	36.84	30	1.4	1.61	-30	2.07
13	7.095	14.418	1028.06	26.59	17.69	13.97	37.88	25	2.29	3.29	-35	3.11
14	7.131	14.513	1027.82	26.45	17.39	13.76	37.09	40	2.15	-0.23	-20	2.32
15	7.079	14.432	1023.62	25.60	17.67	14.07	36.73	40	1.3	1.43	-20	1.96
10	7.094	14.415	1034.12	26.78	17.80	14.04	38.33	15	2.48	4.9	-45	3.57
12	7.078	14.464	1029.89	27.81	17.75	13.89	39.38	15	3.51	6.00	-45	4.61
38	7.063	14.378	1013.21	23.74	17.64	14.25	34.50	60	-0.56	-2.32	0	-0.26
39	7.077	14.347	1015.14	23.92	17.64	14.24	34.72	60	-0.38	-1.97	0	-0.05
40	7 075	14 326	1018.28	24.11	17.73	14.29	35.12	50	-0.19	-0.61	-10	0.35

Esp	MÓDULOS DE RESILIENCIA (MPa)															
No.	σ ₃ = 14 (kPa)				σ ₃ = 28 kPa			σ ₃ = 41 kPa				σ ₃ = 41 kPa				
	$\sigma_d = 27$	48	68	99	27	48	68	99	27	48	68	99	27	48	68	99
	(kPa)															
23	143	102	92	86	182	132	116	106	205	155	136	126	221	179	155	141
24	119	97	88	84	147	119	107	102	171	137	123	117	190	155	139	132
20	111	89	83	79	143	112	102	98	172	132	119	113	196	152	136	129
21	117	89	82	79	146	113	102	97	170	133	120	114	193	153	137	129
22	89	79	76	75	110	101	97	93	132	119	113	110	151	137	128	126
16	123	93	82	76	157	119	102	93	180	138	120	109	201	155	134	123
18	95	82	79	76	119	103	96	92	140	121	112	106	156	136	126	118
7	175	124	114	111	204	151	134	130	228	174	155	147	241	194	173	162
8	133	95	87	86	166	120	109	104	194	142	127	120	214	160	142	134
9	117	84	77	75	147	107	96	92	165	127	114	108	183	144	129	122
4	146	128	121	124	180	159	149	148	208	184	171	165	228	202	187	180
6	106	93	91	94	142	122	117	118	173	146	139	138	196	168	157	153
2	172	142	131	128	223	177	163	153	245	200	183	174	264	221	202	189
3	159	126	119	113	188	151	141	133	209	170	157	148	219	185	172	160
35	64	62	60	61	92	87	82	80	116	106	102	96	140	126	118	112
35	75	65	60	61	105	88	83	79	131	109	102	94	156	130	120	107
37	65	61	58	59	87	81	78	76	110	99	96	90	127	116	111	106
32	49	49	49	46	71	70	68	59	92	87	84	73	111	104	102	88
33	51	52	50	51	73	73	70	69	94	91	89	86	113	109	106	104
29	65	58	53	53	96	82	74	71	124	104	94	89	148	125	113	107
30	55	54	52	53	78	75	71	70	103	96	92	88	123	115	109	105
26	46	49	50	52	72	73	71	71	95	92	89	87	113	110	107	104
27	48	51	50	54	69	70	70	71	88	88	86	88	107	105	103	103
28	45	48	49	52	69	70	70	71	92	90	89	88	113	109	107	104
13	33	37	41	48	53	54	58	62	77	72	74	75	99	91	90	88
14	52	51	48	47	75	70	67	64	96	88	84	79	115	106	101	94
15	57	52	49	49	83	72	68	65	103	89	85	79	121	106	100	94
10	64	59	56	56	91	80	77	73	112	100	94	87	129	118	109	102
12	59	52	49	50	82	71	65	64	101	87	82	77	119	103	97	90
38	76	62	58	57	104	85	76	74	126	103	94	89	146	122	111	105
39	42	46	47	49	69	69	70	71	92	90	87	87	111	108	103	102
40	59	57	55	55	88	81	77	74	113	101	95	90	133	120	112	106

Tabla 3.11 Valores de módulo de resiliencia (arena limosa, SM)

Como se observa de los datos de las tablas anteriores, los tiempos mínimos y máximos de secado y humedecimiento variaron entre 1 y 30 días. En las Figuras 3.6, 3.7 y 3.8 están representados los espacios de compactación de los tres suelos, en ellos se indican las posiciones de las muestras después de compactarse y la posición a la que se desplazaron una vez que se humedecieron o se secaron. De hecho, los resultados indican que la variación en los grados de saturación se encuentra en un rango aproximado de 90 a 65 % para el suelo SM y ML, mientras que para el CH, el grado de saturación sólo varió entre 80 y 90%.

Por otro lado, otro aspecto importante que muestran las gráficas es que a medida que un suelo presenta límites de consistencia más altos, el cambio que sufre el peso volumétrico seco por cambios en su contenido de agua es mayor; esto quizá se deba a los cambios de volumen que presenta el material. Para observar esto con mayor detalle, los datos de la variación del peso volumétrico seco se graficaron con respecto a la variación del contenido de agua (Figura 3.9); de la figura se observa claramente que el suelo SM presenta cambio en su contenido de agua con una mínima variación en su peso volumétrico seco; el suelo ML presenta un comportamiento intermedio entre el suelo CH y el SM.

Figura 3.6 Variación de las condiciones de compactación de los especímenes que se humedecieron o se secaron para la arcilla CH

▲ Probetas que se humedecieron por capilaridad

Variación de las condiciones de compactación de los especímenes que se humedecieron o se secaron para el limo ML

Figura 3.8 Variación de las condiciones de compactación de los especímenes que se humedecieron o se secaron para la arena limosa SM

Figura 3.9 Variación de los pesos volumétricos secos con respecto a la variación en contenido de agua

Para el caso de los datos de módulo de resiliencia, los datos obtenidos se introdujeron al software MINITAB, para determinar el modelo que representa el comportamiento. De dicho análisis y para el caso del suelo CH, el modelo obtenido está representado por la siguiente expresión:

$$M_{r} = e^{4.51 - 0.114(w - w_{opt}) + 0.404(\gamma_{d} - \gamma_{dmax}) + 0.00620\sigma_{3} - 0.00580\sigma_{d}}$$
(3.1)

En donde:

e = Base de los logaritmos (2.71828)

 $(w-w_{opt}) = Variación del contenido de agua con respecto al contenido de agua óptimo (%)$

 $(\gamma - \gamma_{dmax})$ = Variación del peso volumétrico seco con respecto al máximo de la prueba Proctor estándar (%)

 σ_3 = Presión de confinamiento (kPa)

 σ_d = Esfuerzo desviador (kPa)

De los datos reportados por MINITAB, también se tiene el análisis de la significancia de cada uno de los parámetros considerados en el modelo, así como el análisis de varianza del modelo; las Tablas 3.12 y 3.13 muestran el resumen de estos resultados. Asimismo, la Figura 3.10 muestra las gráficas de los valores residuales.

Predictor	Coef.	SE Coef.	t	р
Constante	4.50563	0.03269	137.81	0.000
(w-w _{opt})	-0.11388	0.01230	-9.26	0.000
(γ _d -γ _{dmax})	0.40401	0.09240	4.37	0.000
σ ₃	0.0061969	0.0006296	9.84	0.000
$\sigma_{\sf d}$	-0.0058043	0.0003608	-16.09	0.000
S = 0.184	R ² = 95.2 %			

Tabla 3.12 Análisis de los parámetros del modelo

Tabla 3.13 Análisis de varianza

Source	DF	SS	MS	F	Р
Regression	4	245.203	61.301	1817.44	0.000
Residual error	363	12.244	0.034		
Total	367	257.447			

Figura 3.10 Gráficas de residuales

De acuerdo con los resultados presentados en la Tabla 3.12, todas las variables independientes propuestas aportan a la respuesta del modelo, ya que los valores del valor de "p" son muy pequeños; lo cual indica que se rechaza la hipótesis nula de que los valores de β son cero. Asimismo, el valor de "p" de la regresión es muy pequeño, por tanto, el modelo es adecuado para describir los datos del módulo de resiliencia.

Por otro lado, las gráficas presentadas en la Figura 3.10 son otro indicador de lo adecuado del modelo. La primera gráfica que es la de normalidad indica que los residuales caen aproximadamente en una línea recta; lo cual indica que los residuales se comportan de forma normal, lo que también queda indicado en la gráfica de frecuencias. Además, la gráfica de observación contra residuales indica una disposición aleatoria, que indica que no se han violado las suposiciones contemplados en el método de análisis.

Finalmente, para el caso de este, la Figura 3.11 muestra una relación entre los datos obtenidos en laboratorio con lo predicho por el modelo; de esta gráfica se observa que el modelo predice de forma adecuada el módulo de resiliencia

cuando los valores son inferiores a 50 MPa (figura 3.11a) que es precisamente en donde los valores de módulo de resiliencia presentan menor dispersión (Figura 3.11b).

Figura 3.11 (a) Valor de módulo medido contra el obtenido con el modelo propuesto; (b) Variación de los valores de módulo de resiliencia contra variación en el contenido de agua con respecto al óptimo

Cabe aclarar que los rangos de las variables de la ecuación (3.1) son los siguientes:

(w-w $_{opt}$) entre -5 y 11%; el contenido de agua óptimo es con respecto a la prueba Proctor estándar.

 $(\gamma_d - \gamma_{dmax})$ entre -1.2 y 1.0 kN/m³; el peso volumétrico seco máximo es con respecto a la prueba Proctor estándar.

 σ_3 entre 14 y 41 kPa

 σ_d entre 28 y 97 kPa

El análisis anterior también se llevó a cabo para el suelo ML y SM. De ellos se obtuvieron los siguientes modelos para el módulo de resiliencia:

Para el suelo ML:

$$M_{r} = e^{4.08 - 0.0276(w - w_{opt}) + 2.86(\gamma_{d} - \gamma_{dmax}) + 0.0115\sigma_{3} - 0.00368\sigma_{d}}$$
(3.2)

Para el suelo SM:

$$M_{r} = e^{4.19 - 0.128(w - w_{opt}) - 0.299(\gamma_{d} - \gamma_{dmax}) + 0.015\sigma_{3} - 0.00311\sigma_{d}}$$
(3.3)

Para estos dos suelos, también se revisaron las gráficas de los residuales (Figura 3.12a y b); y los análisis de varianza, etc, resultando todo ello similar a lo presentado para el suelo CH.

Figura 3.12 (a) Gráficas de residuales para el suelo ML; (b) Gráficas de residuales para el suelo SM

Las Figuras 3.13a y b muestran las gráficas en donde se puede observar una relación entre los valores de módulo de resiliencia obtenidos en laboratorio y los calculados por los modelos. Para el caso del suelo ML, el modelo predice adecuadamente para valores inferiores a 50 MPa; para valores mayores se tiene mayor dispersión. Para el suelo de arena limosa, SM, la dispersión de los datos es más uniforme para todos los valores de módulo de resiliencia.

Figura 3.13 (a) Relación entre valores medidos y calculados con el modelo para el suelo ML; (b) Relación entre valores medidos y calculados con el modelo para el suelo SM

Los modelos anteriores también se pueden presentar en función de parámetros tales como (S_r-S_{ropt}), (θ - θ_{opt}) o (ψ - ψ_{opt}). En las Tablas 3.14, 3.15 y 3.16 se resumen los modelos de los suelos y en las Figuras 3.14, 3.15 y 3.16, las gráficas de valor medido contra valor calculado con el modelo. Como se puede observar de estas gráficas, los valores de R² son altos; lo que significa que cualquier parámetro de los analizados puede ser utilizado en el modelo; sin embargo, para cuestiones prácticas, el parámetro seleccionado dependerá de la complejidad que implique su determinación.

Tabla 3.14Modelos obtenidos en función de la succión, del grado de saturación y del
contenido de agua volumétrico (suelo CH)

Tipo de suelo	Modelo
СН	$M_r = e^{4.50 + 0.00296(\psi - \psi_{opt}) + 1.04(\gamma_d - \gamma_{dmax}) + 0.00620\sigma_3 - 0.0058\sigma_d} \text{ ; } R^2 = 94.7\%$
	$M_r = e^{4.51 - 0.0523(S_r - S_{ropt}) + 1.00(\gamma_d - \gamma_{dmax}) + 0.00620\sigma_3 - 0.0058\sigma_d}; R^2 = 95.0\%$
	$M_{r} = e^{4.53 - 0.103(\theta - \theta_{opt}) + 0.65(\gamma_{d} - \gamma_{dmax}) + 0.00620\sigma_{3} - 0.0058\sigma_{d}}; \ R^{2} = 95.1\%$
	Donde: $(\psi \cdot \psi_{opt})$ = Cambio en la succión con respecto al valor de succión en el óptimo; $(S_r \cdot S_{ropt})$ = Variación del grado de saturación con respecto al óptimo; $(\theta \cdot \theta_{opt})$ = Variación del contenido de agua volumétrico con respecto al óptimo.

(b)

(C)

Figura 3.14

Tabla 3.15Modelos obtenidos en función de la succión, del grado de saturación y del
contenido de agua volumétrico (suelo ML)

Tipo de suelo	Modelo
ML	$M_{r} = e^{4.08 + 0.000805(\psi - \psi_{opt}) + 2.61(\gamma_{d} - \gamma_{dmax}) + 0.0115\sigma_{3} - 0.00368\sigma_{d}}; R^{2} = 92.3\%$
	$M_{r} = e^{4.06 - 0.0153(S_{r} - S_{r_{opt}}) + 2.85(\gamma_{d} - \gamma_{dmax}) + 0.011520\sigma_{3} - 0.00368\sigma_{d}}; R^{2} = 91.5\%$
	$M_{r} = e^{4.12 - 0.0259(\theta - \theta_{opt}) + 2.83(\gamma_{d} - \gamma_{dmax}) + 0.0115\sigma_{3} - 0.00368\sigma_{d}}; R^{2} = 91.5\%$

(C)

Relación entre valores medidos y calculados con el modelo para el material ML; (a) en función de la succión; (b) En función del grado de saturación; (c) En función del contenido de agua volumétrico

Tabla 3.16Modelos obtenidos en función de la succión, del grado de saturación y del
contenido de agua volumétrico (suelo SM)

Tipo de suelo	Modelo
SM	$M_{r} = e^{4.19 + 0.00313(\psi - \psi_{opt}) + 0.394(\gamma_{d} - \gamma_{dmax}) + 0.0150\sigma_{3} - 0.00311\sigma_{d}}; R^{2} = 86.4\%$
	$M_{r} = e^{4.13 - 0.0382(S_{r} - S_{r_{opt}}) + 0.222(\gamma_{d} - \gamma_{dmax}) + 0.0150\sigma_{3} - 0.00311\sigma_{d}}; R^{2} = 86.2\%$
	$M_{r} = e^{4.22 - 0.0891(\theta - \theta_{opt}) - 0.0739(\gamma_{d} - \gamma_{dmax}) + 0.0150\sigma_{3} - 0.00311\sigma_{d}} ; R^{2} = 86.1\%$

Figura 3.16

Relación entre valores medidos y calculados con el modelo para el material ML; (a) En función de la succión; (b) En función del grado de saturación; (c) En función del contenido de agua volumétrico

Con los datos presentados en las Tablas 3.3 a 3.11 se pueden llevar a cabo otras comparaciones. Por ejemplo, la Figura 3.17 muestra una serie de curvas de módulo de resiliencia promedio para especímenes de ML ensayados con contenido de agua óptimo, éstas se compararon con las curvas promedio de especímenes que fueron compactados en el óptimo pero después se les permitió que perdieran agua durante un mes. El contenido de agua promedio inicial de las muestras fue de 32 % y el final fue de 25.7 %; por tanto, las muestras perdieron 6.3 % en contenido de agua, lo que corresponde a una reducción en grado de saturación de 12.6 %.

Como se puede observar en la Figura 3.17, los módulos de resiliencia para las muestras compactadas en condiciones óptimas se mantiene en un rango entre 30 y 70 MPa aproximadamente; mientras que las muestras que perdieron un 6.3 % de contenido de agua muestran valores entre 170 y 315 MPa. De acuerdo con estos resultados, un material del tipo ML (como el ensayado en este caso), puede alcanzar valores de módulo de resiliencia como los que se pueden obtener en materiales de base; sin embargo, la característica del material de granulometría fina es que al experimentar un incremento en contenido de agua, el módulo de resiliencia se reduce abruptamente.

Figura 3.17 Variación del módulo de resiliencia de muestras compactadas con un contenido de agua inicial de 32 % y que perdieron 6.3 % (suelo ML)

Por otro lado en cambio, al comparar los módulos de resiliencia de la condición óptima con los módulos de resiliencia promedio obtenidos de muestras que

ganaron en promedio 4.9 % de contenido de agua, las curvas tienen una ligera variación. Los resultados de este suelo (ML) parecen indicar que las muestras compactadas en el óptimo y que experimentan un incremento en su contenido de agua presentan un cambio muy ligero en el módulo de resiliencia (Figura 3.18).

Figura 3.18 Variación del módulo de resiliencia de muestras compactadas con un contenido de agua inicial de 31 % y que ganaron 4.9 %

3.4.2. Muestras compactadas en el óptimo y que sufren un ciclo de humedecimiento o secado pero que regresan a la condición óptima (dos trayectorias) (Suelo ML)

En los párrafos anteriores se analizaron los resultados de módulo de los especímenes que se compactaron en condiciones óptimas y que sufrieron un proceso de humedecimiento o secado; sin embargo, en condiciones de campo, las condiciones climáticas varían estacionalmente, por lo tanto, el material estará expuesto a varias trayectorias de humedecimiento o secado. En este inciso se comparan resultados de muestras que se sujetaron a dos trayectorias.

En el primer caso, los especímenes 89 y 91 se compactaron con contenido de agua óptimo y peso volumétrico seco máximo, con respecto a la prueba Proctor estándar (w= 32 % y γ_d = 12.9 kN/m³). Posteriormente se permitió que absorbieran un promedio de 25 gramos de agua. Después se expusieron al medio ambiente, para que perdieran esa misma cantidad de agua; es decir, se regresaron a la condición óptima nuevamente. Las condiciones finales promedio de contenido de

agua y peso volumétrico seco fueron de 31.6 % y 12.93 kN/m³, respectivamente. El grado de saturación en la condición inicial fue de 85.7 % y el final fue de 85.5 %. La Figura 3.19 indica que los valores de módulo de resiliencia quedan por encima de los que se obtuvieron en la condición óptima. Si se compara por ejemplo, la curva con el confinamiento más bajo (14 kPa), se observa que los valores obtenidos de la muestra que se humedeció y luego se secó hasta regresar a la condición óptima, sus valores de módulo son alrededor de 1.5 veces mayores a los del óptimo.

Figura 3.19

Variación del módulo de resiliencia con el esfuerzo desviador de muestras compactadas en el óptimo, humedecidas y que se regresaron a condiciones óptimas

Por el otro lado, las muestras compactadas en el óptimo (con respecto a la prueba Proctor estándar) y que perdieron en promedio 20 gramos de agua, se colocaron nuevamente en un contenedor de agua para que absorbieran los 20 gramos de agua que habían perdido. Al terminar esta etapa, se envolvieron en plástico antes de ensayarse. La Figura 3.20 indica que para el confinamiento más bajo las curvas de módulo son aproximadamente similares y para los otros confinamientos parecen tener una ligera variación; sin embargo, a grandes rasgos podría decirse que las muestras en este tipo de trayectoria proporcionan valores de módulo de resiliencia similares a los que se obtuvieron después de que se llevó a cabo la compactación de campo.

Figura 3.20 Variación del módulo de resiliencia con el esfuerzo desviador de muestras compactadas en el óptimo, secadas y que se regresaron a condiciones óptimas

4 Conclusiones y Recomendaciones

La evaluación de las propiedades de los materiales utilizados en la construcción de carreteras es de gran importancia, ya que de estas dependerá el futuro comportamiento de la obra. Sin embargo, las propiedades que adquiere el material después de que es compactado en campo no se mantienen constantes durante la vida útil de la obra. Por ejemplo, los materiales de base, subbase, subrasante, terraplén, etc. presentarán variaciones en su módulo de resiliencia, lo que posteriormente se reflejará en comportamiento del pavimento.

Las variaciones del módulo se presentarán estacionalmente, en época de lluvias se esperaría que el contenido de agua de los materiales se incremente y, por lo tanto, el módulo de resiliencia disminuya. Por el contrario, en época de estiaje, el módulo de resiliencia se incrementará por el secado que presentarán los materiales. Este tipo de comportamiento ha sido tema de varias investigaciones realizadas en el extranjero. En la investigación que se presenta en este documento, se analizó la variación que se puede presentar en el módulo de resiliencia de tres suelos nacionales. Del estudio se encontró lo siguiente:

- 1. Para todos los especímenes secados o humedecidos, el grado de saturación varió entre 65 y 90%. En ningún caso se alcanzan grados de saturación mayores, esto quizá se deba principalmente a que el volumen de los especímenes cambia durante el humedecimiento o secado.
- 2. El cambio en el peso volumétrico seco de los especímenes de ML y CH que se secaron o se humedecieron varió linealmente; es decir, un decremento en contenido de agua incrementó el peso volumétrico seco y se redujo cuando el contenido de agua se incrementó. El peso volumétrico seco del suelo SM se mantuvo aproximadamente constante ante los cambios de contenido de agua.
- 3. Cuando los suelos se preparan con contenido de agua óptimo y pierden una cantidad de agua por evaporación, el módulo de resiliencia presenta un incremento con respecto al obtenido en condiciones iniciales. Lo contrario sucede cuando los materiales presentan un incremento en su contenido de agua; sin embargo, la reducción en el módulo es ligera. Pareciera que la variación en el contenido de agua más allá del óptimo ya no es una variable que provoque cambios importantes en el módulo de resiliencia de los materiales. Esto al menos para los tres suelos estudiados.
- 4. La variación del módulo de resiliencia con respecto a cambios en contenido de agua se puede modelar con una ecuación exponencial con parámetros

como (w-w_{opt}), (γ_d - γ_{dmax}), σ_3 y σ_d . El parámetro (w-w_{opt}) puede ser remplazado por (ψ - ψ_{opt}), (S_r-S_{ropt}) o (θ - θ_{opt}) y los valores de R² se mantienen en el mismo rango. El modelo por elegir dependerá de la facilidad con la que los parámetros se puedan determinar.

- 5. El análisis estadístico de los parámetros del modelo indicó que todos ellos aportan para explicar la variación del módulo de resiliencia.
- 6. El análisis de varianza y de residuales indicaron que el modelo es adecuado para el comportamiento del módulo de resiliencia.
- 7. Los modelos propuestos predicen el módulo de resiliencia adecuadamente cuando éste es menor a 50 MPa, esto para el caso del suelo CH y ML. Para valores mayores, se tiene mayor dispersión.
- 8. Para las muestras que se compactaron en el óptimo, después se humedecieron y finalmente se regresaron al óptimo; los módulos obtenidos en esta última condición son aproximadamente 1.5 veces mayores a los obtenidos en la condición óptima. Es decir, una vez que el suelo se somete a diferentes trayectorias de humedecimiento y secado, aun cuando regrese al contenido de agua original, el módulo de resiliencia puede presentar ligeras variaciones; sin embargo, es necesario llevar a cabo un mayor número de pruebas para poder aseverar este comportamiento.
- 9. Por otro lado, las muestras que fueron compactadas en el óptimo, se secaron y luego se regresaron al óptimo parecen mostrar valores de módulo de resiliencia similares a los obtenidos en la condición óptima. Hasta este punto habría que hacerse la siguiente pregunta: ¿Por qué al regresar al óptimo después de realizar ciertas trayectorias sí se obtienen valores de módulo similares a los originales y en otras ocasiones no?

Recomendaciones

1. Los resultados del estudio anterior se presentan sólo para tres tipos de suelos; es recomendable extenderlos a un mayor número de suelos, para poder determinar un comportamiento más generalizado.

2. Es necesario, en los estudios de laboratorio simular hasta donde sea posible las condiciones a las que estará expuesta la estructura en campo; por tanto, se recomienda que en estudios posteriores también incluya la determinación del módulo de resiliencia de especímenes sometidos a varias trayectorias de humedecimiento y secado.

3. Es recomendable que el número de réplicas al determinar una propiedad sea el adecuado para que la respuesta en realidad se deba al efecto estudiado.
Bibliografía y Referencias

Brooks, N., Musharraf, Z.y Khoury, C. (2009). Variations of Resilient Modulus of Subgrade Soils with Post-Compaction Moisture Contents. TRB 2009 Annual Meeting CD ROM.

Soliman, H. y Shalaby, A. (2011). Developing Pavement Design Inputs for Fine-Grained Subgrade Soils in Manitoba. 90th Annual Meeting of the Transportation Research Board 2011. Washinghton D.C.

Sawangsuriya, A., Edil, T.B. y Benson, C.H. (2009). Effect of suction on resilient modulus of compacted fine-grained subgrade soils. TRB 2009 Annual Meeting CD-ROM.

Yang H. Huang (2004). Pavement Analysis and Design. Prentice Hall.

Khoury, N., Brooks, R., Zaman, M., y Khoury, C. (2009). Variations of Resilient Modulus of Subgrade soils with Post- Compaction Moisture Contents. TRB 2009 Annual Meeting CD-ROM.

Christopher, B.R., Schwartz, C. y Boudreau, R. (2006). Geotechnical Aspects of Pavements. National Highway Institute. Federal Highway Administration. U.S. Department of transportation. Report No. FHWA NHI-05-037.

Norma ASTM C 136-06, Sieve Analysis of Fine and Coarse Aggregates.

Norma ASTM C 702-98, Reducing Samples of Aggregate to Testing Size.

Norma ASTM D 1140-00, Amount of Material in Soils Finer tan no. 200 (75-µm).

Norma ASTM D 1557-09, Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56 000 ft-lbf/ft³ (2 700 kN-m/m³)).

Norma ASTM D 2166-06, Standard Test Method for Unconfined Compressive Strength of Cohesive Soil.

Norma ASTM D 2216-10, Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass.

Norma ASTM D 4318-10, Liquid Limit, Plastic Limit, and Plasticity Index of Soils.

Norma ASTM D 698-07e1, Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft³ (600 kN-m/m³)). Norma ASTM D 854-10, Specific Gravity of Soil Solids by Water Pycnometer.

CIUDAD DE MÉXICO

Av. Nuevo León 210 Col. Hipódromo Condesa CP 06100, México, D F Tel +52 (55) 52 653600 Fax +52 (55) 52 653600

SANFANDILA

Carretera Querétaro-Galindo km 12+000 CP 76700, Sanfandila Pedro Escobedo, Querétaro, México Tel +52 (442) 216 9777 Fax +52 (442) 216 9671

INSTITUTO

MEXICANO DEL

TRANSPORTE

www.imt.mx publicaciones@imt.mx

