

Certificación ISO 9001:2000 ‡
Laboratorios acreditados por EMA §

ANÁLISIS ESPACIAL DE LA DISTRIBUCIÓN DE LA CARGA TRANSPORTADA POR AIRE EN MÉXICO

Luz Angélica Gradilla Hernández Óscar Armando Rico Galeana

Publicación Técnica No. 269 Sanfandila, Qro., 2005

SECRETARÍA DE COMUNICACIONES Y TRANSPORTES INSTITUTO MEXICANO DEL TRANSPORTE

Análisis espacial de la distribución de la carga transportada por aire en México

Publicación Técnica No. 269 Sanfandila, Qro., 2005

Este trabajo fue realizado en el Instituto Mexicano del Transporte, sus autores son la M. en I. Luz Angélica Gradilla Hernández y el M. en I. Óscar Armando Rico Galeana. Luz Gradilla es investigadora de la Unidad de Sistemas de Información Geoespacial, adscrita a la Coordinación de Ingeniería Portuaria y Sistemas Geoespaciales; Óscar Rico es investigador de la División de Estudios Económicos y Sociales del Transporte, adscrita a la Coordinación de Economía de los Transportes y Desarrollo Regional.

Los autores agradecen los comentarios y observaciones del M. en Geog. Miguel Ángel Backhoff Pohls, Jefe de la Unidad de Sistemas de Información Geoespacial; del Dr. Eric Moreno Quintero, investigador de la Coordinación de Integración del Transporte, ambos del IMT, y del Dr. Ovidio González Gómez, Coordinador de la Maestría en Sistemas de Transporte y Distribución de Carga de la Universidad Autónoma de Querétaro.

También se reconoce el apoyo del M. en C. Tristán Ruiz Lang, Coordinador de Ingeniería Portuaria y Sistemas Geoespaciales y del Dr. Guillermo Torres Vargas, jefe de la División de Estudios Económicos y Sociales, ambos del IMT.

Índice

İndi	ce	III
Res	sumen	ν
Abs	stract	VI
Res	sumen ejecutivo	IX
1	Introducción	1
2 2.1	Naturaleza espacial del transporte El transporte, concepto y causalidad: equilibrio espacial del precio y la tríada de Ullman	
2.2 2.3	Espacio geográfico, concepto y relación con el transporte	13
2.4	Definición de análisis espacial de la distribución de flujos de carga aérea	
3 3.1 3.2	El modelo gravitacional	
3.3	sociales y al transporte	
3.4 3.5	Utilización actual de las diferentes variantes del modelo gravitacional	27
4 4.1	Obtención y análisis de la información empírica La base de datos origen – destino de la DGAC,	31
4.2 4.3 4.4	características, estructura y contenido para el año 2003	32 35
5 5.1	La red de transporte aéreo de carga en México Orígenes, destinos y enlaces detectados por el procesamiento de la base de datos de los viajes realizados	47
5.2	en 2003 Jerarquización espacial de los aeropuertos nacionales con el método Nystuen-Dacey	
5.3	Jerarquización de los aeropuertos nacionales, utilizando la regla rango-tamaño	
6	Modelación gravitacional de la distribución de carga aérea en México.	
6.1	Procedimiento de calibración de los modelos gravitacionales	77

6.2	Obtención de los parámetros de los modelos gravitacionales para el ámbito nacional, y determinación de la significancia de los mismos	70
6.3	Obtención de los parámetros de los modelos gravitacionales para el ámbito internacional, y determinación de la	
6.4	significancia de los mismos	გე
	determinación de la significancia de los mismos	
6.5	Análisis y discusión de resultados	96
7	Conclusiones	99
8	Bibliografía	103
Ane	exo 1. Arcos de las redes de transporte aéreo de carga doméstica en México	109
Ane	exo 2. Arcos de las redes de transporte aéreo de carga internacional en México	117
Ane	exo 3. Arcos de las redes de transporte aéreo de carga doméstica e internacional en México	125
Ane	xo 4. Resumen de los parámetros estimados para los modelos gravitacionales	139

Resumen

El objetivo general de la investigación fue determinar el patrón general de distribución de la carga que se traslada por el modo de transporte aéreo en México, y verificar la existencia de un comportamiento gravitacional en dicho patrón de distribución.

Los datos empíricos empleados provinieron de la base de datos generada por la Dirección General de Aeronáutica Civil de la SCT, misma que incluye la totalidad de las operaciones de transporte aéreo de carga, registradas en el 2003 en los ámbitos doméstico e internacional. También se utilizó información proveniente de la Dirección General de Planeación de la SCT y el Instituto Nacional de Estadística Geografía e Informática.

Los datos se agruparon con base en el tipo de servicio (regular o fletamento) y el ámbito al que corresponden (nacional o internacional). En total se estudiaron nueve combinaciones de los grupos de información disponibles. El modelo gravitacional que se utilizó en todos los casos es del tipo "no acotado", y se sujetó a una transformación logarítmica, con el propósito de convertirlo en una función lineal susceptible de ser analizada mediante técnicas tradicionales de regresión lineal. En ese sentido, el uso de la regresión lineal permitió la calibración de los parámetros a través del criterio de los mínimos cuadrados, y su posterior validación mediante pruebas estadísticas.

La validación estadística de los modelos resultó satisfactoria respecto a la primera variable independiente (el producto de la carga generada y atraída por los nodos); pero, en general, no fue satisfactoria respecto a la segunda variable independiente (longitud de viaje o distancia). El parámetro de la variable "distancia" resultó no significativo en siete de los nueve modelos, con un nivel de confianza del 95%.

Los resultados permiten concluir que la analogía entre el patrón de distribución de los flujos de carga aérea en México y el comportamiento gravitacional típico no es fuerte. Lo anterior lleva a recomendar que la utilización de los modelos gravitacionales en el pronóstico de los flujos de carga por el modo aéreo debe ser cuidadosa, especialmente en lo relativo a la determinación de la función de impedancia, que es donde interviene la variable distancia.

El hallazgo de una cierta independencia entre la intensidad de los flujos y la distancia física recorrida es un aporte importante desde la perspectiva teórica del análisis espacial del transporte, puesto que aparentemente contradice algunas premisas fundamentales que, en consecuencia, deben afinarse mediante conceptos y relaciones adicionales.

Se considera que los resultados de este trabajo son de utilidad para los planificadores del transporte, y como base de futuras investigaciones sobre la modelación del transporte aéreo de carga.

Abstract

The main objective of this research has been to determine the general pattern of the spatial distribution of the freight transported by the air services in Mexico and to verify the existence of a gravitational behavior on this phenomenon.

The numerical data used has come from the Dirección General de Aeronáutica Civil (DGAC), an agency of the Mexican Transport Secretariat, which yearly records all the movements performed by the airlines operating in Mexico in every origin – destination pair. The data used corresponds to the year 2003 and includes all domestic and international freight operations. Other sources of information were the Dirección General de Planeación, another agency of the Mexican Transport Secretariat, and the Instituto Nacional de Estadística Geografía e Informática.

For the analysis, data were grouped in accordance to its service category (regular or contract) and service scope (domestic and international) and a total of nine groups were modeled. The gravity model used is a no-constrained one and was linearized by means of a logarithmic transformation in order to permit the use of standard techniques of linear regression. The linear regression gave the possibility of parametric calibration using the least squares criterion and its subsequent statistical validation.

The statistical validation of the models resulted fully satisfactory in relation with the first independent variable (the product of cargo generated and cargo attracted in every node) but, in general terms, was no satisfactory in relation with the second independent variable (the traveled distance) because this parameter resulted out of the significance interval, at a confidence level of 95%, in seven out of the nine models.

On the basis of the results it is concluded that there is a weak analogy among the gravitational behavior and the pattern of the air transportation freight distribution in Mexico. Consequently, it is recommended that the use of gravity models in modeling the distribution process on air transportation must be carefully validated in a previous stage, specially on aspects related with the deterrence function, which usually includes the traveling distance as a variable.

The finding of certain independence among the freight flow volumes and the physical distance traveled, is a contribution to the theoretical discussion in the transport geography, since this finding seems to oppose to some of its basic premises.

It is our opinion that this work is useful to transport planners and constitutes a departure point for future research on cargo transport modeling.

Resumen ejecutivo

El objetivo general de este trabajo fue determinar el patrón general de distribución de la carga que se traslada por transporte aéreo en México, y verificar la existencia de un comportamiento gravitacional en dicho patrón de distribución.

En la investigación se tuvieron los siguientes objetivos específicos:

- a) Realizar un análisis espacial de la distribución de los principales flujos de transporte que se realizan por el modo aéreo en México
- b) Calibrar y validar modelos gravitacionales que representen los flujos principales de mercancías en el 2003, entre los principales orígenes y destinos de la red de transporte aéreo en México
- c) Determinar si el patrón de distribución de carga en la red de transporte aéreo en México para el 2003, es análogo a un comportamiento gravitacional

Para el logro de los objetivos y el desarrollo de la investigación, se ha buscado probar la siguiente hipótesis:

"La intensidad de los flujos de intercambio de mercancías que se registró en el año 2003 entre los nodos de la red de transporte aéreo de carga en México, es una función de la importancia de los nodos como generadores y atractores de carga y de la impedancia que existe para viajar entre ellos (en términos de la distancia), de manera análoga a un comportamiento gravitacional".

Para probar la hipótesis se obtuvieron estimaciones de los parámetros de una serie de modelos gravitacionales no acotados, utilizando como base la información empírica observada (los flujos de carga entre los diferentes aeropuertos del país en vuelos regulares y de fletamento, incluyendo los vuelos internacionales que tienen como origen o destino algún aeropuerto mexicano) en el 2003, que genera la Dirección General de Aeronáutica Civil (DGAC) de la Secretaría de Comunicaciones y Transportes (SCT). Los parámetros de los modelos gravitacionales se estimaron mediante un análisis de regresión lineal múltiple, y su significancia estadística se verificó a través de pruebas de hipótesis.

Dentro de esta investigación se revisan algunos fundamentos teóricos del análisis espacial de la movilidad, así como de la modelación matemática de la distribución espacial del transporte de carga.

El análisis espacial de la red de aeropuertos y de sus flujos de carga se realiza con base en la perspectiva teórica de la geografía del transporte, la modelación matemática del transporte, y la teoría de redes.

La esencia de la relación entre transporte y espacio geográfico radica en la naturaleza espacial del transporte. Desde ese enfoque, el transporte producido por

las sociedades humanas existe estrictamente dentro de los límites definidos por el espacio geográfico, siendo ésta una de sus diferencias fundamentales con el transporte generado por la naturaleza u otras categorías biológicas.

El transporte existe en el espacio geográfico y es condicionado por él; pero a su vez constituye uno de los elementos de configuración del propio espacio geográfico, puesto que es una manifestación de las actividades humanas y elemento fundamental para la ocupación del territorio.

El interés (cognoscitivo) de la geografía del transporte se centra en el patrón geográfico de la localización de los componentes de los sistemas de transporte, y en la magnitud de las interacciones espaciales que se manifiestan por medio de ellos.

Debido al hecho de que el espacio geográfico no es homogéneo en sus niveles de "fricción" o de dificultad para ser recorrido, los desplazamientos asociados a las actividades de transporte se establecen a lo largo de las rutas que maximizan la transferibilidad¹ entre los diferentes puntos del espacio involucrados en la movilidad. Esta característica espacial del transporte se refleja en una singularidad que permite su abstracción, mediante redes formadas por conjuntos de arcos y nodos.

Los nodos o vértices de la red pueden constituirse por los puntos de origen y destino de los intercambios (ciudades, puertos, aeropuertos o centros de zona, denominados centroides, a los que se les atribuyen características del área que representan), así como por las instalaciones de transferencia modal. Los arcos se asocian con las rutas, tanto si tienen una estructura física de soporte (terrestres) como si no cuentan con ella (marítimas, aéreas, o las referidas a todo tipo de flujos invisibles, como son los de telecomunicación y telemática), o con los flujos (pasajeros, mercancías, flujos telemáticos,...) que por ellas circulan.

Las redes de transporte resultantes consideran la estructura espacial, la organización de la infraestructura y las terminales como parte de la oferta de los servicios de transporte. La calidad de las redes se determina por las características de cada componente; es decir, la conectividad entre los arcos y la contribución de cada componente al sistema total.

En el 2003 existió una gran concentración de carga en unos cuantos arcos de la red de transporte de carga en México; este fenómeno se presentó tanto en el ámbito nacional como internacional. En términos generales, se observa una falta de simetría bidireccional en los arcos de todas las redes modeladas, exceptuando la red de carga internacional de fletamento, ya que esta última presentó un grado de simetría mayor en muchos de sus arcos.

_

¹ Del término en inglés "transferability"; no existe un término en castellano para la traducción, sin embargo, se utilizó transferibilidad.

La concentración en nodos y arcos produce una morfología radial de la red (poco reticular) hacia dos o tres nodos (México, Monterrey, Tijuana). El nodo de la Ciudad de México y sus conexiones, hacia prácticamente todos los demás nodos de la red, le otorgan una forma característica de erizo marino debido a su ubicación centralizada en el espacio geográfico mexicano. Por otra parte, la localización en los extremos del territorio de los nodos en Tijuana y Monterrey produce morfologías más de tipo cónicas que se superponen con la red radial hacia el centro.

En la red de carga internacional regular y de fletamento, se observó que 48.7% de la carga aérea que entra al territorio mexicano y 65% de la carga que sale tienen como origen y destino (intermedio o final) respectivamente algún aeropuerto estadounidense; esto se debe a la enorme importancia de los intercambios comerciales entre los dos países; pero también es posible que el porcentaje se vea incrementado por el hecho de que en los Estados Unidos de Norteamérica se encuentran importantes *hubs* aéreos internacionales, y que parte de la carga que se dirige a ellos pudiera tener un destino final en otro lugar del mundo y sólo cambió de avión en el territorio estadounidense.

En la red de carga internacional regular se detectaron fuertes flujos de carga entre el aeropuerto de la Ciudad de México y los aeropuertos de Ámsterdam, París y Los Ángeles; el de Guadalajara tiene una fuerte relación con el de Memphis; estos aeropuertos situados fuera del territorio mexicano, estuvieron entre las primeras 15 terminales a nivel internacional en el 2003 debido a los altos volúmenes de carga que manejaron.

Los modelos jerárquicos de redes son técnicas de análisis de información que pueden emplearse para entender la estructura espacial de un sistema de ciudades, y también de un sistema de transporte. Estos modelos se basan en el análisis de los flujos entre los nodos de la red, así como en la suma total de los flujos que maneja cada nodo; por tanto, los flujos máximos entre nodos se utilizan para categorizar esos nodos dentro del sistema.

Uno de los métodos que sirven para categorizar los nodos del sistema de transporte es el denominado Nystuen-Dacey; este método fue aplicado durante la investigación a la red de transporte aéreo de carga doméstica.

De acuerdo con el método de Nystuen y Dacey, el nodo dominante del sistema es el formado por la Ciudad de México. Los aeropuertos de Tijuana y San Luis Potosí resultaron con una categoría de nodos subdominantes. Los de Guadalajara y Monterrey, a pesar de ser importantes en términos del manejo absoluto de carga, desde la perspectiva de la ordenación espacial no alcanzan la clasificación de subdominantes, pues se encuentran incorporados al subsistema de la Ciudad de México.

A pesar de que en la jerarquía espacial aparecen dos nodos subdominantes, sigue siendo muy pronunciado el dominio del aeropuerto de México; pero conforme se

mantenga el crecimiento del transporte aéreo de carga doméstica, será menester mejorar la organización, la integración y la articulación de la red de aeropuertos; de tal forma que existan otros espacialmente dominantes y subdominantes, que por su posición geográfica sean aeropuertos clave para algunas cadenas logísticas del sector industrial, tal y como ha pasado con las terminales de Tijuana y San Luis Potosí.

De acuerdo con el análisis rango-tamaño, también el nodo central de la Ciudad de México es el que resulta con la mayor importancia, pero en este caso es seguido de Guadalajara y Monterrey con los rangos 2 y 3 respectivamente.

En los resultados del análisis con la regla rango-tamaño, se observa que no existen aeropuertos para los rangos 5, 7, 17, 18, 19, 21, 31, 33, 34, 35, 36, 37 y 39; además, que el parámetro β es mayor a uno, lo que significa que la distribución jerárquica de los aeropuertos tiende a la primacía de algunos sobre los demás. Para aplicar la regla rango - tamaño se tomó en cuenta, sólo la carga nacional con el fin de poder complementar los resultados obtenidos al aplicar el método Nystuen-Dacey.

Para el análisis gravitacional de la distribución de la carga en la red, los datos se agruparon con base en el tipo de servicio (regular o fletamento), y el ámbito al que corresponden (nacional o internacional). En total se estudiaron nueve combinaciones de los grupos de información disponibles. El modelo gravitacional que se utilizó en todos los casos es del tipo "no acotado", y fue sujeto a una transformación logarítmica con el propósito de convertirlo en una función lineal susceptible de analizarse mediante técnicas tradicionales de regresión lineal. El uso de la regresión lineal permitió la calibración de los parámetros con base en el criterio de los mínimos cuadrados; y su posterior validación, mediante pruebas estadísticas.

La validación estadística de los modelos resultó satisfactoria respecto a la primera variable independiente (el producto de la carga generada y atraída por los nodos); pero en general, no fue satisfactoria en lo que corresponde a la segunda variable independiente (longitud de viaje o distancia). El parámetro de la variable "distancia" resultó no significativo en siete de los nueve modelos, con un nivel de confianza del 95%.

En dos de los nueve modelos se obtuvieron resultados estadísticamente satisfactorios para las dos variables explicativas; sin embargo, aun en ambos casos (red nacional de fletamento y red internacional regular), se observa una débil analogía gravitacional, puesto que ambos modelos explican únicamente alrededor del 60% (R²) de los datos de la variable explicada.

Los resultados permiten concluir que la analogía entre el patrón de distribución de los flujos de carga aérea en México, y el comportamiento gravitacional típico no es fuerte. Lo anterior lleva a la recomendación de que el empleo de modelos gravitacionales en el pronóstico de los flujos de carga por el modo aéreo debe ser

cuidadosa, especialmente en lo relativo a determinar la función de impedancia, que es donde interviene la variable distancia.

Como consecuencia de la baja analogía gravitacional detectada en el transporte aéreo de carga en México, se rechaza la hipótesis de partida de la presente investigación, ya que se tiene suficiente evidencia para afirmar que la intensidad de los flujos de intercambio de mercancías que se registró en el 2003, entre los nodos de la red de transporte aéreo de carga en México, no es una función de la importancia de los nodos como generadores y atractores de carga, y de la impedancia que existe para viajar entre ellos (en términos de la distancia), de manera análoga a un comportamiento gravitacional.

En futuras investigaciones se recomienda utilizar mayor variedad de funciones de impedancia, en las que se utilice la distancia relativa (o económica) en lugar de emplear únicamente la distancia geométrica. También se aconseja considerar el uso de un mayor número de variables explicativas.

Otro aspecto a investigar en el futuro es la sensibilidad de otros modos de transporte a la distancia física. En particular se considera razonable suponer que el transporte terrestre (especialmente el autotransporte) es más sensible a la distancia física que el aéreo.

Durante la investigación se han esbozado dos posibles hipótesis para explicar el hallazgo de una baja correlación entre la distancia física y la intensidad de los flujos entre los nodos de la red.

La primera hipótesis consiste en que en el transporte aéreo, la distancia de viaje no es una variable que refleja suficientemente la impedancia a la transferibilidad entre dos puntos en el espacio geográfico. Es decir, en el transporte aéreo de carga la distancia no representa un factor importante de disuasión a la movilidad; al menos para distancias cortas o relativamente cortas.

Lo anterior implica que en estos casos, la distancia no puede ser la única variable que intervenga en la función de impedancia, sino que se debe construir una función del tipo "costo generalizado de transporte" en donde aparezcan otras variables que actúen negativamente hacia la movilidad (que sean disuasivas), como el costo, el tiempo total de traslado, o las mermas.

La segunda hipótesis de explicación tiene que ver con la notable falta de simetría direccional de los flujos de carga, pues se encontró que la mayoría de los arcos de la red presentan grandes diferencias entre las intensidades de flujo de carga en un sentido y el sentido opuesto. Esta situación provoca que para una misma distancia, que corresponde a la longitud del arco, se tengan dos valores muy opuestos de intensidad de flujo, lo cual tiende a disminuir la correlación entre la distancia y la intensidad de flujo.

El hallazgo de una cierta independencia entre la intensidad de los flujos y la distancia física recorrida, es un aporte que se considera importante desde la

perspectiva teórica del análisis espacial del transporte, puesto que aparentemente contradice algunas premisas fundamentales que en consecuencia, deben ser afinadas mediante conceptos y relaciones adicionales.

Se recomienda que conforme la demanda del transporte aéreo de carga en México aumente, se lleve a cabo una cuidadosa planeación y ejecución de proyectos que permitan aumentar el nivel de desarrollo de la red de aeropuertos mexicanos, y mejorar su integración con otros aeropuertos a nivel nacional e internacional.

Se considera que los resultados de este trabajo son de utilidad para los planificadores del transporte y como base de futuras investigaciones sobre la modelación del transporte aéreo de carga.

1 Introducción

El objetivo general de este trabajo se estructuró con base en dos intenciones fundamentales: determinar el patrón general de distribución de la carga que se transporta por el modo aéreo en México, y verificar la existencia de un comportamiento gravitacional en dicho patrón de distribución.

La ley de la gravitación universal fue formulada por el físico y matemático inglés Isaac Newton en 1684, donde se afirma que la fuerza de atracción entre dos cuerpos es directamente proporcional al producto de sus masas, e inversamente proporcional al cuadrado de la distancia que los separa. El descubrimiento de esta relación representó un avance importante para las ciencias físicas.

En el siglo XIX se comenzó a explorar la posibilidad de aplicar principios desarrollados por la física y las matemáticas en las ciencias sociales; en particular resultó interesante utilizar el principio de la gravitación universal en la explicación de algunos fenómenos de interacción regional.

Para mediados del siglo XX comenzó a utilizarse con mayor formalidad el enfoque cuantitativo en el análisis del transporte. Desde esta perspectiva, el geógrafo Edward L. Ullman contribuyó de manera destacada a que el modelo gravitacional se estableciera como una técnica de amplia utilización en la geografía del transporte (Black, 2003), y de hecho desarrolló su conocida tríada conceptual para explicar las interrelaciones regionales (complementariedad, transferibilidad y oportunidad de intervención), con base en el principio gravitacional (Potrykowski y Taylor, 1984).

Por esa misma época, investigadores como F. C. Iklé; J. D. Carrol; H. B. Bevis (Potrykowski y Taylor, 1984), y H. J. Carey (Ortúzar y Willumsen, 1994) comenzaron a emplear variantes del modelo gravitacional para construir modelos de distribución de viajes en redes de transporte; una de las primeras innovaciones importantes de esos modelos fue sustituir la población (cantidad de habitantes) por la cantidad de viajes generados y atraídos por los nodos (Ortúzar y Willumsen, 1994). Esta sustitución permitió eliminar problemas que se presentan cuando existe baja correlación entre el tamaño de las poblaciones y la movilidad.

Una segunda adaptación importante de los modelos gravitacionales aplicados al análisis del transporte, consistió en hacer flexible el grado de la potencia de la variable "distancia"; es decir, se definió el exponente de esta variable como un parámetro de calibración (no restringido a valores enteros). Adicionalmente, el llamado factor de impedancia, o variable disuasiva, se amplió a partir del concepto tradicional de la "distancia", hacia la utilización del tiempo (de viaje, de espera, de entrega, etcétera), o de una función de costo generalizado (que puede ser de potencia decreciente, como en el caso exponencial).

Sin embargo, la gran mayoría de los modelos gravitacionales aplicados en el análisis de la distribución de flujos de transporte, fueron parte de procesos de planeación y solución de problemas de transporte urbano de pasajeros.

A partir de los conocidos estudios de transporte urbano realizados en los años cincuenta en las ciudades de Detroit y Chicago (EEUU), en los países desarrollados se observó el afianzamiento (académico y profesional) del paradigma de planeación urbana estructurado con base en una secuencia de cuatro fases de modelación para el pronóstico de la demanda de transporte. Las cuatro fases son: generación de viajes, distribución de viajes, elección de modo de transporte y selección de ruta.

Para los años setenta, los problemas de transporte en zonas urbanas se tornaron críticos en los países industrializados (Londres, París, Tokio, Nueva York, Los Ángeles, etcétera), y comenzaron a agobiar a las crecientes ciudades de los países en desarrollo (México, Sao Paulo, Río de Janeiro, Santiago, Buenos Aires, etcétera); por su parte las consecuencias sociales, económicas y ambientales del problema de transporte urbano presionaron fuertemente a los gobiernos y a las universidades al reconocimiento de la planificación como la principal estrategia racional para afrontarlo.

En esos años, el modelo gravitacional se consolidó como la técnica de primera elección en la fase de análisis y pronóstico de la distribución de viajes, pero como ya mencionó, la mayoría de los avances teóricos y prácticos respecto a su planteamiento y calibración se relacionaron con problemas de transporte de pasajeros en los ámbitos urbano y suburbano.

El transporte de carga tiene diferencias importantes respecto al transporte de personas (Moreno, 2004). Por ejemplo, las decisiones relativas a los orígenes, destinos, modo de transporte y rutas a seguir durante los recorridos, no responden a las preferencias de un usuario individual, como en el caso de los conductores de automóviles e incluso, aunque en menor medida, de los pasajeros, sino a una logística corporativa, normalmente asociada a una cadena de producción – comercialización; adicionalmente, la simetría direccional de la intensidad de los flujos en los arcos de la red suele ser mucho mayor en el caso de los pasajeros, lo cual constituye un problema especialmente importante en el análisis de la distribución en el espacio, debido a que para una misma distancia se tienen al menos dos valores muy distintos de flujo.

En las últimas décadas ha sido notable la tendencia de las grandes corporaciones económicas en dispersar geográficamente sus lugares de aprovisionamiento, producción y comercialización, generando mercados económicos cada vez más amplios, e integrando logísticamente los sistemas de producción locales en lo que se ha llamado el proceso de "globalización".

La dispersión geográfica se apoya en un sistema de transporte de carga cada vez más organizado y eficiente (progresivamente más rápido, de mayor capacidad y

barato); aunque naturalmente enfrenta mayores problemas y exigencias que resultan urgentes de resolver. Por este motivo, actualmente hay una importante necesidad de generar conocimiento respecto a la modelación del transporte de carga, entendiendo esta actividad como parte imprescindible del proceso de planeación del transporte de mercancías.

Las diferencias entre los dos tipos de transporte (pasajeros y carga) plantean una importante área de oportunidades de investigación, dado que aún queda mucho por investigar en la modelación del transporte de carga.

En el Instituto Mexicano del Transporte (IMT), desde la década de los años noventa, se han desarrollado algunos trabajos que incluyen esfuerzos y aportaciones en la modelación del transporte de carga; sin embargo, han estado sensiblemente orientados hacia el transporte terrestre de mercancías, debido a que el autotransporte y el ferrocarril han sido en estos años las modalidades dominantes en el transporte de carga en México.

Entre los primeros trabajos publicados por el IMT sobre modelación del transporte de carga, se pueden citar las investigaciones de Roberto de la Llata (1991, 1994) para estimar intensidades de flujo de tránsito en los arcos de la red carretera con base en la matriz origen – destino, y un modelo de programación matemática para optimizar la localización de puntos de aforo dentro de la red.

También destacan las publicaciones de Alberto Mendoza y sus colaboradores (1995, 1997, 1999, 2000. 2002, 2003), que han desarrollado modelos para determinar flujos de equilibrio en redes multiproducto y multimodales (autotransporte y ferrocarril), ante diversos escenarios de reparto modal y de transporte asociado con sectores productivos específicos, como la industria automotriz y la cervecera.

Eric Moreno ha trabajado sobre modelos de optimización en redes de transporte de carga (2000) y más recientemente, como resultado de su trabajo doctoral, ha publicado varios trabajos sobre estrategias de gestión de la infraestructura carretera en respuesta a problemas del sobrepeso de vehículos de carga, utilizando el enfoque de modelación de sistemas (Moreno, 2004, 2005a, 2005b).

En relación con el transporte aéreo de carga, Oscar Rico realizó una modelación restringida al ámbito doméstico (Rico, 2001) en la que se incluyeron modelos de generación y atracción de carga, y un modelo de distribución basado en el principio gravitacional. Los resultados fueron satisfactorios respecto a los modelos de generación y atracción de carga, aunque el modelo de distribución presentó un desempeño menor. Esta situación motivó el deseo de realizar investigaciones posteriores, de entre las cuales el presente trabajo forma parte.

En la investigación que se reporta se tuvieron los siguientes objetivos específicos:

a) Desarrollar un análisis espacial de la distribución de los principales flujos de transporte que se realizan por el modo aéreo en México.

- b) Calibrar y validar modelos gravitacionales que representen los flujos principales de mercancías en el 2003, entre los principales orígenes y destinos de la red de transporte aéreo en México.
- c) Determinar si la red de transporte aéreo de carga en México para el 2003 presenta un patrón de distribución de carga análogo a un comportamiento gravitacional.

En la investigación se busca probar la siguiente hipótesis:

"La intensidad de los flujos de intercambio de mercancías que se registró en el año 2003 entre los nodos de la red de transporte aéreo de carga en México es una función de la importancia de los nodos como generadores y atractores de carga, y de la impedancia que existe para viajar entre ellos (en términos de la distancia), de manera análoga a un comportamiento gravitacional".

Para probar la hipótesis se obtienen estimaciones de los parámetros de una serie de modelos gravitacionales no acotados, utilizando como base la información empírica observada (los flujos de carga entre los diferentes aeropuertos del país en vuelos regulares y de fletamento, incluyendo los vuelos internacionales que tienen como origen o destino algún aeropuerto mexicano) en el 2003, que genera la Dirección General de Aeronáutica Civil (DGAC) de la Secretaría de Comunicaciones y Transportes (SCT). Los parámetros de los modelos gravitacionales se estimaron a través de un análisis de regresión lineal múltiple, y se verifica su significancia mediante pruebas de hipótesis.

Se considera que en el caso de que se rechace la hipótesis, los resultados de la investigación se mantienen útiles pues aportan información a los tomadores de decisiones institucionales, en el sentido de alertarlos sobre la inadecuación del uso indiscriminado de los modelos gravitacionales en su aplicación al transporte de carga y para el trabajo académico, ya que representaría una base para aplicar o desarrollar otros modelos que se ajusten en forma más adecuada a las características de la distribución de carga aérea en la red aeroportuaria de México.

Dentro de esta investigación se revisan algunos fundamentos teóricos del análisis espacial de la movilidad, así como de la modelación matemática de la distribución espacial del transporte de carga.

El análisis espacial de la red de aeropuertos y de sus flujos de carga se realiza con base en la perspectiva teórica de la geografía del transporte, la modelación matemática del transporte, y la teoría de redes.

El reporte de investigación está estructurado con base en siete capítulos y un apartado de anexos. El primer capítulo es la presente introducción; en el dos se abordan conceptos relacionados a la naturaleza espacial del transporte; en el tres se hace una pequeña reseña histórica de la utilización del modelo gravitacional hasta llegar a su empleo actual, y también se describe el modelo gravitacional aplicado en la presente investigación. En el capítulo cuatro se hace una

descripción de la metodología empleada; en el capítulo siguiente se hace una descripción de la red de transporte aéreo de carga en México; en el capítulo seis se presentan los resultados de los modelos gravitacionales utilizados, así como el análisis de la validez de los mismos; finalmente en el capítulo siete, y último, se presentan las conclusiones.

2 Naturaleza espacial del transporte

2.1 El transporte, concepto y causalidad: equilibrio espacial del precio y la tríada de Ullman

La definición de transporte más antigua que se ha podido documentar durante la investigación para el presente trabajo, proviene del libro del Dr. George Lloyd Wilson (edición de 1946), en la que sostiene que: "comercialmente, transportar es el proceso de mover o llevar personas de un lugar a otro, así como el porteo de bienes desde las localidades donde son producidos, cultivados o procesados, a los puntos donde serán manufacturados, distribuidos, almacenados o consumidos".

La definición de Wilson destaca la naturaleza económica del transporte como actividad de servicio (comercial) en la que el objeto consiste en el movimiento de personas o mercancías; estas últimas integradas a un proceso logístico de aprovisionamiento – distribución – consumo. En la definición, también conviene destacar el concepto de transporte como proceso, implícitamente integrado por actividades sucesivas y concatenadas.

Un defecto que se puede observar en la definición de Wilson es la ausencia del reconocimiento de la naturaleza espacial del transporte; carencia compartida en el marco teórico - conceptual de la mayoría de los economistas anglosajones.

La siguiente definición de transporte, basada en Rodrigue (2003), incorpora al concepto de transporte una visión espacial:

El transporte se define como el movimiento de personas o bienes de un origen a un destino (se excluye la transmisión electrónica de información) cuyo propósito es superar el espacio que existe entre el origen y el destino, considerando la existencia de restricciones físicas y humanas, tales como distancia, tiempo, divisiones administrativas y topología.

Respecto a las causas que dan lugar a la necesidad del transporte (o demanda de transporte), Thompson (1974) en su libro de *Economía del transporte* sostiene que los desplazamientos de personas se explican por el deseo de estar en el lugar A más que en el lugar B; y los de carga, porque las mercancías se encuentran en A, pero se requieren en el lugar B; es decir, debido a razones estrictamente utilitarias. En opinión de este autor, se pueden identificar siete razones principales por las que la gente se traslada o transporta mercancías; éstas son:

1. Diferencias geográficas

En cada región se pueden producir ciertos productos agrícolas y se pueden extraer ciertos minerales; pero es imposible que en cada región se pueda obtener toda la gama de productos agrícolas y minerales que existen en el planeta. De ahí la necesidad de transportar ciertos productos, de algunas regiones a otras.

2. Especialización

La civilización occidental se basa en un alto grado de especialización que no es posible alcanzar, a menos que el productor especialista tenga un rápido acceso a un gran mercado, lo que implica el uso del transporte. En una sociedad moderna las mercancías son producidas por organizaciones complejas en las que cada detalle de diseño y fabricación corren a cargo de especialistas. Por supuesto, que ésta es la clave de una elevada productividad y de un alto nivel de vida, y descansa principalmente en la disponibilidad de transporte barato para aportar las materias primas y llevar a mercados distantes los artículos elaborados.

3. Otras economías de escala

La especialización es sólo una de las ventajas que la producción en gran escala hace posible. Otras ventajas al respecto como el empleo de la automatización, equipos especializados, manipulación de grandes volúmenes y comercialización masiva, requieren a menudo un nivel muy grande de producción con un gran mercado; y esto, a su vez, exige transporte barato a grandes distancias, tanto para servir al mercado como para aportar las materias primas y mano de obra.

4. Objetivos políticos y militares

El establecimiento y mantenimiento de control político sobre vastos territorios requiere servicios rudimentarios de transporte entre el centro político y los principales grupos de población. En forma análoga, los objetivos militares, sean ofensivos o defensivos, apenas pueden alcanzarse sin servicios de transporte efectivos.

5. Relaciones sociales

Algunos de los motivos de viaje de las personas, se encuentran en el afán de socializar. La disponibilidad de un transporte eficaz ensancha enormemente el radio posible de relaciones sociales.

Actividades culturales

Los hitos de la cultura moderna, en un sentido más amplio, tienden a consistir en acontecimientos únicos, que necesariamente se producen en determinados lugares y por lo que las personas deben trasladarse a ellos,

como, por ejemplo, acontecimientos musicales, exposiciones, ferias mundiales, juegos olímpicos, desfiles, etc.

7. Localización de población

Una enorme proporción del transporte de pasajeros deriva de la decisión de la gente de residir a kilómetros de distancia de su trabajo, o de sus principales centros de compra, y sociales. La voluntad de gastar tiempo y dinero, regularmente en desplazamientos para trabajar, comprar, ir a la escuela, etc, representa a menudo un equilibrio entre las desventajas del viaje cotidiano y las ventajas de vivienda más económica, o más espaciosa; colonia preferida o situaciones sociales ya establecidas.

Para el caso del transporte de carga, debemos enfocarnos en las primeras tres razones que ofrece Thompson; sin embargo, es necesario situarnos en el nuevo contexto de finales del siglo XX e inicios del XXI. A continuación se describen algunos de los cambios que se han dado:

Relocalización continua de las actividades de manufactura, cuyas causas y efectos las podemos entender mejor desde el punto de vista de Francisco Gatto (1990), que expresa que los avances en las comunicaciones y en la microelectrónica facilitaron la separación de los procesos productivos en el plano territorial; pero fueron fuertemente interrelacionados en el plano de la información. También afirma que lo anterior tuvo efectos territoriales, tales como el proceso de desindustrialización de las áreas manufactureras tradicionales y que se llevara a cabo una dispersión de plantas hacia la periferia, ya que se intenta hacer uso de las diferencias regionales de salarios, del bajo nivel de conflicto en las relaciones laborales, y de las diferencias en los precios de los factores.

La progresiva integración económica y la reducción del proteccionismo, no sólo ha elevado los flujos de intercambio comercial sino que también ha intensificado la competitividad en la mayoría de las industrias. En consecuencia, un elevado número de empresas está enfocándose en reducir el tiempo de su "ciclo de pedido", y buscan mejorar las estrategias para reducir inventarios. Hoy en día se ven más y más empresas que utilizan intencionalmente el transporte de carga aérea para obtener sus inventarios en cortos periodos de tiempo. Es decir, se ve claramente cómo los cambios en la forma de producción afecta directamente en los tipos de servicios que deben ofrecer los diferentes modos de transporte y el nicho de mercado que cada uno de ellos va ganando o perdiendo de acuerdo con estos cambios.

Enfocándonos al transporte aéreo, mencionaremos algunas nuevas tendencias en cuanto a los atributos del servicio que prefieren los embarcadores de carga aérea intercontinental, y que se obtuvieron de la encuesta que realizó el "International Logistics Quality Institute (ILQI)

(2004); la encuesta arrojó que los embarcadores de carga aérea intercontinental buscan tres atributos claves: a) confiabilidad en el servicio; b) tarifas competitivas, y c) tiempos de tránsito cortos. El 70% de las compañías incurrirían en problemas significativos dentro de la cadena logística si sus envíos de carga aérea intercontinental se retrasan uno o dos días, ya que la mayoría utiliza sistemas de producción *Justo a Tiempo* (JAT).

De acuerdo con Zhang (2003), en los aeropuertos que se consideran hubs mundiales como el de Hong-Kong, se ha observado que existen dos motivos principales por los que un expedidor de carga selecciona el modo aéreo. El primero es la rapidez del transporte aéreo, especialmente en distancias largas, ya que el tiempo es un factor crítico para bienes perecederos; para aquellos bienes que deben ser entregados a la mañana siguiente (por ejemplo, periódicos); y es una ventaja competitiva clave para los bienes sujetos a las presiones de una cadena de suministro JAT, en particular para los productos relacionados con la computación y artículos de moda. El segundo motivo consiste en que en el transporte aéreo existe un bajo riesgo de pérdida o daño a la carga; esto es una ventaja para los bienes con un alto valor por unidad. Los cargos monetarios en la industria de carga aérea para este tipo de bienes valiosos y sensibles al tiempo son, por lo general, montos pequeños en comparación con el valor de los artículos o mercancías a transportar. De esta forma, los aeropuertos que están más cerca de los expedidores de carga y que tienen los costos totales y los tiempos de entrega más bajos, inevitablemente se convertirán en fuertes candidatos para un hub (punto concentrador) regional de carga aérea. Lo anterior muestra la importancia de la localización geográfica, así como los costos y tiempos de entrega como factores competitivos en una competencia regional y global entre aeropuertos para atraer tráfico de carga. Los factores competitivos también incluyen a la infraestructura, a los clientes, y a la política de aviación de transporte intermodal.

Con lo anterior se pretende ofrecer una breve aproximación al conocimiento del continuo proceso de globalización y los cambios que ha traído en los métodos de producción, de aprovisionamiento y distribución; mismos que a su vez han inducido cambios en las características que se demandan del transporte de carga, y aumentado la complejidad de las cadenas de suministro. Como claro ejemplo del cambio de los anteriores esquemas de aprovisionamiento está el sistema JAT, ya que éste ha ocasionado que se transporten menores cantidades de carga, con un espaciamiento menor de las entregas, pero constante y con más exigencias en cuanto a confiabilidad y puntualidad.

2.1.1 Equilibrio espacial del precio

Otra propuesta teórica relacionada con la causalidad del transporte fue planteada en los años 50 por el economista norteamericano Paul Samuelson (1952), quien

desarrolló el principio conocido como el equilibrio espacial del precio y que puede ser referido en términos generales de la siguiente manera.

Bajo la suposición de que se tiene un producto o bien homogéneo disponible en dos regiones separadas geográficamente, se darán las siguientes etapas en el proceso para alcanzar el equilibrio espacial del precio de ese producto:

- a) Partiendo de que las curvas de oferta y demanda se interceptan en un precio más alto en uno de los dos mercados regionales, si esos dos mercados están suficientemente separados uno de otro; entonces, es probable que los productores locales abastezcan de ese bien sólo al área local, y que no exista intercambio comercial entre las dos regiones.
- b) Sin embargo, si el costo unitario de transporte del bien, desde la región con el precio más bajo, hasta la región con el precio más alto, es menor que la diferencia unitaria de precio; entonces, tendrá sentido que los productores en el área A del precio más bajo, envíen su producto al área B que tiene el precio más alto.
- c) La presencia de ese producto en el mercado del área B, que ha sido originado en A, y que tendrá un precio igual al precio del producto en su propio mercado A, más el costo del transporte, traerá como consecuencia un cambio en las curvas de oferta y demanda de ambas regiones.
- d) Conforme cierta cantidad del bien deje la región de precio más bajo, habrá un decremento en la oferta; esto llevará a que suba el precio del producto en el área local A. Y por la otra parte, los precios caerán en la región con el precio más alto B, ya que la oferta adicional en el mercado, originalmente con el precio más alto, hace que el precio baje.
- e) Esto lleva a una alta y baja en las curvas de oferta y demanda hasta que se alcanza el precio de equilibrio: en ese momento, el precio en la que era originalmente la región con el precio más alto B es igual al precio del bien en la región con el precio más bajo A, más el costo unitario del transporte entre las dos áreas. En este punto habrá una cantidad equilibrada de intercambio comercial, y no existirá algún otro incentivo para aumentar o disminuir la cantidad que se intercambia comercialmente.

Desde luego, lo anterior no es una descripción completa de la situación. Es razonable inferir que un área tiene una ventaja comparativa en la producción del bien de interés. La otra región tendría una ventaja similar o tal vez economías de escala que le permite producir otros bienes a un bajo costo. Por tanto, habrá intercambio comercial de un conjunto de bienes entre ambas áreas. Es posible extender esta situación al caso de más de dos regiones.

En el planteamiento de Samuelson, es evidente la influencia del costo de transporte en el fenómeno del equilibrio espacial del precio; sin embargo, su influencia en el intercambio de bienes entre regiones se define de manera más completa en el planteamiento teórico de Edward Ullman, que se presenta en el siguiente apartado de este capítulo.

2.1.2 Tríada de Ullman

Con base en una perspectiva con un mayor componente espacial, el geógrafo Edward Ullman (citado en Black, 2003) propuso una tríada de conceptos para explicar las causas del intercambio comercial entre dos o más regiones espacialmente separadas. Esta tríada se forma por los siguientes conceptos: complementariedad, transferibilidad, y oportunidad de intervención.

La complementariedad es una medida de la posibilidad de intercambio comercial entre dos regiones, definida en función de la oferta y la demanda de los productos. Se relaciona con las ventajas comparativas entre dos localidades para la producción de algún bien o servicio específico, y con los beneficios que se obtienen por medio de la especialización y el intercambio comercial. Este concepto se relaciona con la intensidad de atracción de las masas en el modelo gravitacional.

La transferibilidad es una medida de la factibilidad de transportar una mercancía entre dos regiones, definida en términos económicos, pero sin dejar de considerar los factores tecnológicos y geográficos relacionados con el problema. La transferibilidad se relaciona con la accesibilidad, de tal manera que representa una medida de las dificultades para que se lleve a cabo la movilidad entre dos puntos (en el espacio); además, representa el origen de los conceptos de impedancia y de costo generalizado de transporte, y está relacionado con el concepto de distancia en el modelo gravitacional.

La oportunidad de intervención determina cuáles son las regiones, de entre varias posibles, con las que es más probable realizar intercambios en función de su accesibilidad, y sus ventajas comparativas y competitivas. Este concepto se vincula con la existencia de varios polos de atracción en el espacio, que finalmente determina el equilibrio gravitacional.

Como ha sido esbozado previamente, se puede encontrar una estrecha relación entre el planteamiento conceptual de Ullman y el principio gravitatorio aplicado al espacio geográfico (Potrikowsky, et al, 1974). La complementariedad deriva de la potencialidad de las regiones medida en términos de sus ventajas comparativas; la transferibilidad corresponde a la distancia o dificultad para superar el espacio; y finalmente, la oportunidad de intervención tiene su paralelo en la presencia de un mayor número de núcleos potenciales de intercambio en el espacio. Por lo anterior, no es casual que Ullman fuera uno de los primeros teóricos que propusieran el empleo del modelo gravitacional para explicar los intercambios comerciales, el comportamiento espacial de los viajes y la distribución de la carga en redes de transporte.

Complementariedad Oportunidad de intervención Facilidad de transferencia

Demanda Oferta A COMPLETA A COMPLETA A A COMPLETA A COMP

Figura 2.1

Esquemas de complementariedad, oportunidad de intervención y transferibilidad

Fuente: Rodrigue, J-P, et al. (2003)

2.2 Espacio geográfico, concepto y relación con el transporte

2.2.1 Concepto de espacio geográfico

En este trabajo se hace referencia y se utiliza frecuentemente el concepto de "espacio geográfico"; por ello se considera pertinente incluir una revisión del mismo con base en referencias a la literatura especializada. Adicionalmente se presenta una revisión de la relación entre espacio geográfico y transporte, por ser este último el tema general de la presente investigación.

Daniel Salgado (1997), afirma que el espacio geográfico es un continuo tridimensional finito estructurado por la sociedad y la naturaleza sobre la superficie continental, en función de las manifestaciones que presenta en la distribución, extensión y ubicación de hechos y fenómenos sociales. Evidencia asimismo, una configuración con base en las relaciones sociales que sobre los factores naturales e históricos, paulatinamente incorpora la sociedad a un territorio determinado a la lógica de su organización social.

Oliver Dollfus (1976), afirma que cada elemento del espacio (independientemente de su naturaleza) puede ser ubicado en el contexto de un sistema de referencias - digamos geográficas-, aunque también poseer a la vez una posición única en dicho sistema; es igualmente importante su situación con relación al conjunto que lo contiene, así como las relaciones que mantiene con los diversos medios de los que forma parte; asimismo, Milton Santos (1986), identifica como elementos (conceptos o categorías) fundamentales de dicho espacio a los hombres, las empresas, las instituciones, el medio ecológico y las infraestructuras; a la vez que

afirma su postura de que la esencia del espacio es eminentemente social y se encuentra estrechamente vinculada con la dinámica del proceso productivo, enmarcado en la evolución histórica (temporal), conceptualización claramente convergente en torno al estudio del espacio social, indicado por (Sánchez, 1991).

Todos los puntos o lugares contenidos en el espacio geográfico se localizan en la superficie de la Tierra, o en sus proximidades. En este sentido, no obstante que el espacio geográfico coincide en cuanto a magnitud física y a las leyes que lo rigen, no tiene que ser identificado en estricto con el mesocosmos, ya que implica definirse en estrecha relación con el ámbito de la actividad humana y su propio proceso de desarrollo (Núñez, 2003).

Como las actividades humanas se realizan en y sobre la existencia territorial, la sociedad lleva a cabo una extracción, transformación y cultivo de bienes materiales, contando con cultura, economía e historia social como marcos generales. Así pues, se puede poner de manifiesto que la naturaleza y la sociedad son interdependientes, y que esta interrelación da lugar al espacio geográfico; (Salgado, 1997).

El análisis del espacio geográfico puede desarrollarse desde distintas perspectivas: desde la teoría de la localización; la temporal (geografía histórica); las tecnologías; los conjuntos espaciales; la configuración de las redes y los movimientos; o bien a partir de la dualidad entre espacios urbanos y espacios rurales (Encarta, 2002).

Finalmente, se puede afirmar que el espacio geográfico es una entidad concreta, localizable y diferenciada. Es el componente de la realidad objetiva que subyace a todas las interacciones de la naturaleza con la sociedad; se estructura y se transforma de acuerdo con la acción conjunta de factores que obedecen a las leyes físicas, químicas, biológicas y sociales; y puede ser representado y modelado con mayor o menor complejidad a través de los recursos de la geometría.

2.2.2 Relación del transporte con el espacio geográfico

La esencia de la relación entre transporte y espacio geográfico radica en la naturaleza espacial del transporte. El transporte producido por las sociedades humanas existe estrictamente dentro de los límites definidos por el espacio geográfico, siendo ésta una de sus diferencias fundamentales con el generado por la naturaleza u otras categorías biológicas (Rico, 2005).

El transporte existe en el espacio geográfico y es condicionado por él; pero a su vez constituye uno de los elementos de configuración del propio espacio geográfico, puesto que es una manifestación de las actividades humanas y elemento fundamental para la ocupación del territorio (Rico, 2005).

Dentro del espacio geográfico se llevan a cabo procesos que son una serie de operaciones concatenadas (que poseen unidad y secuencia lógica), o que se

reproducen con determinada regularidad; derivado de lo anterior, un sistema puede presentarse bajo la forma de una red recorrida por flujos. Asimismo, un sistema en su conjunto ejerce funciones, determinadas en gran medida por sistemas de mayor magnitud.

La dinámica de los fenómenos se ejerce en el espacio geográfico (expresándose a través de diversas configuraciones territoriales) gracias a los intercambios, a las transformaciones, y a las transferencias que se expresan en forma de flujos de materia y de energía o, si se prefiere más concretamente, de poblaciones, bienes, servicios, información, etcétera. Estos flujos se ordenan predominantemente en función de necesidades humanas, y sujetos a ritmos, volúmenes y direcciones, social y económicamente determinados (Núñez, 2003).

Se puede establecer la estructura espacial de un sistema de transporte ubicando cada uno de sus elementos de acuerdo con una escala, y a un sistema de coordenadas geográficas. Es factible representar sistemas de transporte locales, regionales, e incluso globales para su posterior análisis.

El estudio de las relaciones entre espacio geográfico y transporte es en gran medida la razón de ser de la geografía del transporte, disciplina científica que surgió en el siglo XIX y que presenta un significativo desarrollo a partir de la segunda mitad del siglo XX.

El interés (cognoscitivo) de la geografía del transporte se centra en el patrón geográfico de la localización de los componentes de los sistemas de transporte y en la magnitud de las interacciones espaciales que se manifiestan por medio de ellos (Black, 2003).

La definición de la geografía como la rama de la ciencia que busca explicar, predecir y analizar la localización y magnitud de los fenómenos que ocurren en o cerca de la superficie terrestre, tiene implicaciones relacionadas con el transporte. La superficie terrestre es diferente de un lugar a otro; y siendo estas diferencias las que dan lugar a la necesidad de transporte (Black, 2003; Thompson, 1974).

Otro concepto geográfico fundamental, la organización del territorio, a su vez tiene fuertes relaciones con el transporte. Existen ligámenes espaciales entre organización y territorio; el desarrollo de esos vínculos se realiza mediante una red de transportes que canaliza los flujos de mercancías, personas, capital e información, hacia los centros de origen y destino estructuradores del espacio regional. Los flujos se establecen entre centros y áreas a través de una infraestructura que sirve de soporte a su emisión y recepción (Seguí, 1991).

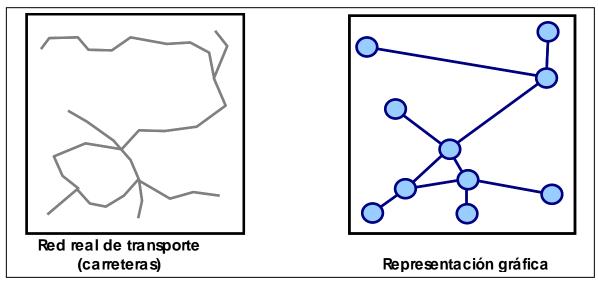
Por su parte, la infraestructura de transporte establece una relación simbiótica con el territorio, ya que, por un lado, donde existen centros entre los que ya circulan los flujos se instala una red de transporte para fortalecerlos; donde se instala una red de transportes, aparecen centros inducidos por ella. Así pues, la infraestructura de transporte aparece como el esqueleto de la región económica (Seguí, 1991).

La infraestructura de transporte posee una capacidad transformadora, creadora y reorientadora que se ejerce en el espacio geográfico (Seguí, 1991).

Cabe enfatizar que los flujos de bienes y personas se llevan a cabo en el espacio geográfico, y que esos flujos dependen de la configuración de los sistemas de transporte y de los sistemas de actividades.

Por otro lado, tanto el espacio geográfico como las acciones humanas que se realizan sobre él responden a principios socioespaciales, los cuales permiten comprender mejor la organización espacial existente, y los alcances o posibilidades del ordenamiento territorial. Se entiende ordenamiento territorial, como la función pública y política compleja apoyada en instrumentos jurídicos y en diferentes conocimientos científicos y aportaciones pluridisciplinarias. Lleva implícita la voluntad y la acción pública para mejorar la localización y disposición de los hechos en el espacio; especialmente de aquellos con un sentido estructurante o un mayor significado respecto a las necesidades y condiciones de vida de quienes lo habitan; establece, para un espacio dado, la distribución de los usos del suelo y la localización de las estructuras y de los sistemas que posibilitan la mayor integración funcional del territorio, tomando como punto de partida los caracteres propios que singularizan cada espacio geográfico (Massiris, 2003).

2.3 La estructuración reticular de los sistemas de transporte de carga


Debido al hecho de que el espacio geográfico no es homogéneo en sus niveles de "fricción" o de dificultad para ser recorrido, los desplazamientos asociados a las actividades de transporte, siempre se establecen a lo largo de las rutas que maximizan la transferibilidad entre los diferentes puntos del espacio involucrados en la movilidad. Esta característica espacial del transporte se refleja en una singularidad que permite su abstracción mediante redes formadas por conjuntos de arcos y nodos.

Los nodos o vértices de la red pueden constituirse por los puntos de origen y destino de los intercambios (ciudades, puertos, aeropuertos o centros de zona, denominados centroides, a los que se les atribuyen características del área que representan), así como por las instalaciones de transferencia modal. Los arcos o aristas se identifican con las rutas, tanto si tienen una estructura física de soporte (terrestres) como si no cuentan con ella (marítimas, aéreas, o las referidas a todo tipo de flujos invisibles, como son los de telecomunicación y telemática), o con los flujos (pasajeros, mercancías, flujos telemáticos...) que por ellas circulan (Seguí, 1991).

Las redes de transporte resultantes consideran la estructura espacial, la organización de la infraestructura y las terminales de transporte que se consideran como parte de la oferta de los servicios de transporte, ya que ésta provee la infraestructura para los diversos modos de transporte, y determina las condiciones bajo las cuales fluye la carga. La calidad de las redes la determinan las

características de cada componente; es decir, la conectividad entre los arcos y la contribución de cada componente al sistema total, Garrido (2001).

Figura 2.2
Ejemplo de la representación gráfica de un sistema de transporte

Fuente: Rodrigue, J-P, et al. (2003)

Como se muestra en la figura anterior, un sistema de transporte puede tomarse físicamente como si fuera una red, dado que sus características asemejan a las redes; aunque al tratar de hacer un modelo del sistema real de transporte en forma de grafo, se obtiene una representación matemática o abstracta del sistema mediante su representación en términos de nodos y arcos (Nagurney, 2003).

El tráfico aéreo, al igual que el marítimo, y a diferencia del terrestre, no precisa de una red fija de infraestructuras que canalicen los desplazamientos. Por el contrario, se apoya en los aeropuertos como unidades de escala e intercambio, mismos que se representan como nodos en la redes; y aunque los corredores están vagamente definidos, se pueden representar por medio de arcos. El tipo de representación gráfica que se muestra a continuación es la que se utilizó en la presente investigación.

Los arcos que se clasifican como unidireccionales tienen flujo hacia un solo; sentido y los arcos bidireccionales, admiten flujo en ambos sentidos.

En el caso del transporte aéreo no existe una restricción física en los arcos que no permita dos sentidos de flujo, por lo que todos los arcos se representaron sin flecha y lo único que indica si existe flujo en ambos sentidos, es la base de datos que acompaña a cada arco.

Representación de una red de transporte aéreo

Aeropuerto

Corredores (arcos)
definidos vagamente

Representación gráfica

Figura 2.3

Representación de una red de transporte aéreo

Fuente: Elaboración personal basada en Rodrigue, J-P, et al. (2003)

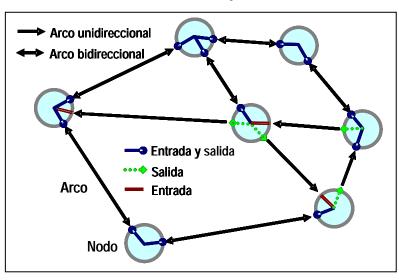


Figura 2.4
Arcos unidireccionales y bidireccionales

Fuente: Rodrigue, J-P, et al. (2003)

El éxito del transporte aéreo ha ido unido a una fuerte expansión de los aeropuertos (nodos) o centros de intercambio. En pocos años han pasado de simples instalaciones que permitían las tareas de aterrizaje y despegue de los aviones y otros servicios mínimos que precisaban unas y otras funciones, a lo que son hoy día: auténticas ciudades aeroportuarias, donde se concentra todo tipo de servicios; no sólo implicados directamente en el transporte aéreo, sino cumpliendo unas funciones complementarias y colaterales con el mismo. El crecimiento y la expansión de tales instalaciones es un fenómeno que puede verse en cualquier país que haya registrado una expansión del tráfico aéreo (Rendeiro, 1999).

2.4 Definición de análisis espacial de la distribución de flujos de carga aérea

A continuación se presentará la definición de "análisis espacial" que se desarrolló para la presente investigación, así como la posible aplicación de la realización de un análisis espacial de la distribución de carga aérea.

Análisis espacial: identificación y descripción por separado de los principales elementos que conforman un determinado fenómeno que se da en el espacio geográfico a través de la abstracción de determinados componentes del mundo real.

En la investigación el análisis espacial se enfoca a la distribución de los principales flujos de carga aérea en México; por tanto, se describen algunos flujos por separado y después en conjunto para determinar la morfología de la red aeroportuaria en función de los flujos de carga georreferenciados, así como de las terminales origen y destino de dichos flujos. Al describir los principales flujos de carga y la morfología de la red, también se obtiene un panorama de la organización espacial de la red aeroportuaria mexicana y de los flujos de carga que se dan en la misma, así como de la jerarquía que tiene cada aeropuerto dentro de la red, lo cual podría ayudar a interpretar los resultados de una modelación, que resultara significativa, de la distribución de los flujos de carga ya identificados.

Si el análisis espacial se realizara en redes aeroportuarias para cada uno de los últimos 10 años (incluyendo 2004), se podría obtener una tendencia de hacia dónde se está dirigiendo la mayor cantidad de carga y de dónde procede, con la finalidad de identificar regiones que presentan una tendencia al crecimiento en demanda de servicio de transporte aéreo de carga.

La finalidad de realizar un análisis espacial de la distribución de carga aérea en México es aportar una herramienta, que integrándola a una serie de análisis (que no se abordan en la presente investigación) tales como los análisis financieros, ambientales y macroeconómicos, así como a la modelación matemática (por ejemplo, la modelación de la distribución de carga que se aborda en el trabajo) incluyendo la simulación, podría ser de utilidad para llevar a cabo la planeación de la red aeroportuaria mexicana, ya sea para su reconfiguración, integración, o posible ampliación.

3 El modelo gravitacional

3.1 Gravitación universal, el modelo de Newton

El físico y matemático inglés, Isaac Newton, descubrió en 1684 que todos los cuerpos en el Universo están sujetos a fuerzas de atracción, y demostró que dos cuerpos se atraen entre sí con una fuerza directamente proporcional al producto de sus masas, e inversamente proporcional al cuadrado de la distancia que los separa.

Es decir:

$$F_{ij} \propto \frac{m_i \cdot m_j}{d_{ij}^2} \tag{3.1}$$

En donde m_i es la masa de uno de los objetos; m_j la masa del otro; y d_{ij} la distancia que los separa. La expresión 3.1 es el llamado modelo de Newton e indica analíticamente que mientras mayores sean las masas, más grande será la fuerza de atracción que ejercen una sobre la otra; y cuanto mayor sea la distancia que los separa, menor será la fuerza de atracción.

3.2 Primeras aplicaciones del modelo gravitacional a fenómenos sociales y al transporte

El modelo gravitacional basado en una analogía con respecto a la teoría de Newton de la atracción universal, ha encontrado una amplia aplicación en los estudios espaciales de los efectos recíprocos (las interacciones en fenómenos socioeconómicos). Los primeros intentos de empleo en el campo de las ciencias socioespaciales, se encuentran ya en los trabajos de la segunda mitad del siglo XIX (Black, 2003; Seguí, 1991). Carey, en 1858, notó una tendencia de comportamiento gravitacional al observar la interacción entre ciudades; y escribió que "La ley de gravitación molecular constituye una condición indispensable de la existencia del ser humano...Cuanto más grande es la cantidad de los (hombres) reunidos sobre un área determinada, tanto más grande es la fuerza de atracción que allí se origina... La gravitación es aquí, como en todas partes, directamente proporcional a la masa e inversamente proporcional a la distancia" (Potrykowski, *et al.* 1984).

El demógrafo inglés E. G. Ravenstein, en 1885, percibió esa tendencia al observar los flujos migratorios del siglo XIX. En 1929, Willian J. Reilly, un analista de mercados, utilizó un modelo gravitacional para determinar áreas de influencia de mercado, alrededor de una serie de localidades (Potrykowski, *et al.* 1984; Black, 2003; Seguí, 1991).

La concepción del modelo gravitacional en su aplicación a los estudios socioespaciales, fue también desarrollada por George Kingsley Zipf; y en forma bastante independiente, por John Q. Stewart en 1940; ambos mostraron que las leyes utilizadas en la física newtoniana podían predecir una diversidad notable de fenómenos humanos relacionados con la interacción en el espacio a nivel macroscópico; una de las leyes que utilizaron fue la de la atracción universal, misma que fundamenta el modelo gravitacional (Krueckeberg y Silvers, 1978).

En la segunda mitad del siglo XX se desarrolló el análisis del transporte como fenómeno económico-espacial, especialmente mediante el uso de técnicas cuantitativas. En este sentido, fue particularmente relevante el trabajo del norteamericano Edward L. Ullman en 1954; quien consideraba al transporte como uno de los elementos primordiales de la economía nacional; y destacó su función en la estructuración espacial y el funcionamiento de los sistemas económicos. El propio E. L. Ullman propuso el empleo del modelo gravitacional en el análisis espacial del transporte, derivando del planteamiento teórico de este modelo su conocida tríada de factores para explicar las interrelaciones regionales: complementariedad, transferibilidad, y oportunidad de intervención (Potrykowski, et al. 1984; Seguí, 1991).

En años más recientes, y refiriéndonos concretamente a la aplicación del modelo gravitacional al transporte aéreo, Joana Seguí (1991), citando a Antón (1987), menciona que uno de los campos en que más se ha aplicado el modelo gravitacional es en el del transporte aéreo de pasajeros, donde se han establecido distintos modelos de interés atendiendo a diversas características del flujo, a sus finalidades y a sus formulaciones. A mediados de los años 70 se plantearon las condiciones para la elaboración de un modelo gravitacional teórico cuya finalidad es la predicción de la demanda turística, y que tiene perfecta validez en su aplicación al transporte aéreo. Otros modelos para la investigación de flujos de transporte aéreo son el de Crampon-Tan (para la previsión de usuarios en viajes turísticos); el de Blumer (flujo de personas en distancias cortas-medias); y el de Howrey.

3.2.1 La forma del modelo gravitacional clásico en estudios de transporte

El primer modelo gravitacional (Ortúzar, 1994) para el área de la geografía del transporte, establece lo siguiente: la intensidad de la interacción entre dos regiones o localidades, es directamente proporcional al producto de sus poblaciones e inversamente proporcional al cuadrado de la distancia que las separa, tal como se expresa en la siguiente relación matemática:

$$I_{ij} \propto \frac{P_i \cdot P_j}{d_{ij}^2} \tag{3.2}$$

Donde:

 I_{ii} = intensidad de interacción entre dos regiones o localidades

 P_i = población de la región i

 P_i = población de la región j

 d_{ij} = distancia entre la región i y la región j

Por tanto, la más simple formulación del modelo gravitacional para el área del transporte se puede realizar de la siguiente forma:

$$T_{ij} = \alpha_{ij} \frac{P_i \cdot P_j}{d_{ii}^2} \tag{3.3}$$

 T_{ii} = número de viajes entre el origen i, y el destino j

 P_i = población de la región i

 P_i = población de la región j

 d_{ij} = distancia entre la región i y la región j.

 α_{ii} = factor de proporcionalidad.

A mediados del siglo XX, investigadores como Casey comenzaron a utilizar variantes del modelo gravitacional ya descrito para construir modelos de distribución de viajes en redes de transporte; una de estas variantes fue la sustitución de las poblaciones (cantidad de habitantes en cada población) por la cantidad de viajes o carga generados en las regiones. Esta sustitución permitió eliminar los problemas de inexactitud, que se presentaban cuando existía poca correlación entre el tamaño de los nodos, definido por la cantidad de habitantes, y su importancia en los intercambios espaciales de personas o mercancías.

Una segunda adaptación importante consistió en hacer flexible el grado de la potencia de la variable "distancia" (d_{ij}); es decir, se definió el exponente como un parámetro de calibración no restringido a valores enteros (Rico, 2001).

De tal forma se fue modificando el modelo gravitacional inicial (3.3), que se introdujo una función más genérica para la distancia $f(c_{ij})$, que representa la disuasión para viajar conforme aumentan la distancia, el tiempo o el costo. El modelo modificado es el siguiente:

$$T_{ii} = \alpha_{ii} \cdot O_i \cdot D_i \cdot f(c_{ii})$$
(3.4)

Donde:

 T_{ij} = número de viajes entre el origen i y el destino j

 O_i = número de viajes producidos por la zona i

 D_i = número de viajes atraídos por la zona j

 $f(c_{ii})$ = función de impedancia entre la zona i y la zona j

 α_{ii} = factor de proporcionalidad

La función disuasoria $f(c_{ij})$ (también llamada función de impedancia) está por lo general definida en términos de la distancia entre la región i y la región j.

Existe un problema en la aplicación de cualquier modelo gravitacional; éste consiste en que en la matriz de flujos, el consumo de las regiones de destino de determinados flujos puede no ser igual a la producción de las regiones que originaron esos flujos. Al ser el modelo gravitacional un sistema cerrado, en donde todos los flujos son creados y consumidos dentro del sistema, la suma de las capacidades de consumo debe ser igual a la suma de las capacidades de producción. Para resolver este problema, usualmente se introducen factores de compensación y se utiliza un proceso de iteraciones para ajustar T_{ij}, de tal manera que alcance el equilibrio entre la producción y el consumo.

Debido al problema señalado, se desarrollaron modelos que pueden estar simplemente acotados (ya sea en la producción o en el consumo), o doblemente acotados (tanto en la producción como en el consumo). De acuerdo con Ortúzar (1994), para obtener los modelos simplemente y doblemente acotados se debe remplazar el factor de proporcionalidad α , por dos factores de balance A_i y B_i .

$$T_{ij} = A_i \cdot O_i \cdot B_j \cdot D_j \cdot f(c_{ij})$$
(3.5)

Se pueden introducir los términos O_i y D_j dentro de los factores, y se escribiría el modelo de la siguiente forma.

$$T_{ij} = a_i \cdot b_i \cdot f(c_{ij}) \tag{3.6}$$

Las ecuaciones 3.5 y 3.6 son versiones clásicas del modelo gravitacional doblemente acotado. Las versiones del modelo simplemente acotado, ya sea acotado en el origen o en el destino, pueden escribirse haciendo cualquiera de los factores A_i o B_j igual a 1. Para el modelo acotado al origen, sería B_j = 1.0 para toda j, y

$$A_i = \frac{1}{\sum D_j f(c_{ij})} \tag{3.7}$$

En el caso del modelo doblemente acotado, los valores de los factores de balance son:

$$A_i = \frac{1}{\sum_{j} B_j D_j f(c_{ij})}$$
 (3.8)

$$B_{j} = \frac{1}{\sum_{i} A_{i} O_{i} f\left(c_{ij}\right)} \tag{3.9}$$

Por tanto, los factores de balance son interdependientes; esto significa que para calcular uno se necesitan los valores del otro.

Una mejora del modelo gravitacional constituye la aportación de A.G. Wilson, en 1980, mediante la aplicación de la teoría de la información. Wilson utiliza el modelo gravitacional en el marco de la concepción de la maximización de entropía en una distribución de probabilidades bidimensionales, como resumen del grado de interacción de los individuos localizados en unas zonas de origen en las que residen, en relación con unas zonas de destino de la interacción, donde se localizan los lugares de trabajo. Este tipo de modelo se ha empleado como marco de análisis en la planificación territorial (Seguí, 1991).

En las secciones siguientes se describen algunas aplicaciones y variantes del modelo gravitacional.

3.3 Aplicación del modelo gravitacional en la distribución de viajes y de carga, en redes de transporte

Los modelos gravitacionales pertenecen a la clasificación de modelos denominados "modelos sintéticos", y son generalmente utilizados para aproximaciones robustas (*rough approximation*) de los movimientos; Kutanoglu (2000). Los modelos gravitacionales, a su vez pertenecen al grupo de modelos de interacción espacial (Roy, *et al.* 2004).

Los modelos gravitacionales se aplican frecuentemente en la estimación de la distribución de viajes dentro del contexto del transporte. Estos modelos también han sido modificados y empleados en la estimación de los flujos de carga entre una serie de regiones de producción y consumo. El modelo gravitacional es particularmente útil cuando existen distancias medibles, y diferencias en costos (de producción) entre cada una de las regiones de producción y consumo.

El modelo gravitacional es el modelo de distribución de viajes más utilizado, Ortúzar (1994); relaciona explícitamente los flujos entre zonas, con la impedancia que existe entre las zonas para que se dé el viaje. La suposición que hay detrás del modelo gravitacional, es que el número de viajes producidos por la zona i y atraídos por la zona j es proporcional a:

- El número de viajes generados en la zona *i*
- El número de viajes atraídos por la zona j
- Una función de impedancia de la separación espacial relativa entre las dos zonas. (Se pueden emplear diferentes medidas de impedancia, tales como distancia de viaje, tiempo de viaje, o costo de viaje).

Por otro lado, la distribución de los flujos de carga se puede definir como el movimiento de bienes de varios orígenes a diversos destinos. La modelación de los flujos de carga suele realizarse a través de varias dimensiones (diversos factores) tales como volumen, peso y viajes. Holguín-Veras y Ellen Thorson (2000) consideran la cantidad de carga en toneladas (u otra unidad de peso) como unidad de medida para la demanda y la oferta de carga. Esto permite que los modelos basados en mercancías (commodity-based models) y no en los viajes, tal como puede serlo el modelo gravitacional, capturen en forma más precisa los mecanismos económicos que propician los movimientos de carga, mismos que son ampliamente determinados a través de los atributos de la carga, como el tonelaje.

En las encuestas sobre el flujo de productos en EE.UU. están disponibles los valores en dólares y el tonelaje de la carga. Sin embargo, Holguín-Veras y Ellen Thorson (2000) sugieren evitar la utilización de los valores en dólares de los embarques, ya que creen que los valores monetarios de los embarques presentan una mayor variabilidad de un tipo de producto a otro. Además, también argumentan que la aplicación del número de viajes puede generar resultados poco precisos, debido a los viajes en vacío que representan de 15 a 50 % del total de los viajes, y el objetivo es de hecho estimar la carga que está siendo transportada.

Los modelos de planeación de carga pueden clasificarse en modelos basados en mercancías (commodity-based models) y modelos basados en viajes trip based models) (Demetsky 2002, citando a Veras y Thorson, 2000). El modelo basado en mercancías estima la producción y atracción en toneladas de carga de cada zona, y estima el flujo de toneladas entre los pares origen-destino. Por lo general, las mercancías se clasifican y se agrupan de acuerdo con la carga que es similar en las propiedades de la propia mercancía y del transporte. Comúnmente se cree que los modelos basados en mercancías reflejan mejor los factores económicos que afectan los flujos de carga.

3.4 Utilización actual de las diferentes variantes del modelo gravitacional

Actualmente se utiliza el modelo gravitacional con ciertas variantes, en áreas que estudian el transporte de personas y de carga, la migración, y el intercambio comercial entre países; así como en estudios de localización de tiendas minoristas, y en estudios sobre la difusión de enfermedades, entre otros.

Entre algunos artículos presentados en los últimos años sobre la aplicación del modelo gravitacional, se tiene el de Michael Demetsky (2002) quien realizó una calibración del modelo gravitacional para la distribución de carga por autotransporte dentro del estado de Virginia (EE.UU.) y en regiones cercanas, concluyendo que el modelo gravitacional era apropiado. Otro artículo muestra la aplicación del modelo gravitacional en el flujo de pasajeros en el transporte aéreo en Estados Unidos de Norteamérica (Guoqiang Shen, 2004). Y para el área de los intercambios comerciales, Jacob Wanjala (2004) presentó un artículo en donde se modelan los intercambios comerciales para la región de Kenya y Sudáfrica.

Por su parte, Anca Porojan (2001) hace una revisión del modelo gravitacional utilizado para el intercambio comercial y agrega algunos desarrollos teóricos recientes de las ecuaciones econométricas; Howard Wall (1999) aplicó el modelo gravitacional para estimar los efectos del proteccionismo en el comercio de Norteamérica.

Por otro lado, Charles Carter (1993) establece que el modelo gravitacional es una herramienta aceptable de análisis de mercado para determinar la factibilidad económica de tiendas minoristas. Los modelos gravitacionales para esta área se denominan en inglés "retail gravity models". El modelo asume que dentro de un área comercial, la probabilidad de que un consumidor compre en una tienda particular es directamente proporcional a algún factor del tamaño de la tienda, e inversamente proporcional a algún factor de la distancia entre el consumidor y la tienda.

El modelo gravitacional para tiendas minoristas "retail gravity model" también se utiliza para cuantificar la viabilidad económica de un proyecto propuesto. MacKenzie Bottum (1989), introduce parámetros adicionales al modelo gravitacional; en el modelo revisado, el comportamiento del consumidor no sólo depende del tamaño de la tienda y de la distancia, sino también está en función de la accesibilidad; las barreras físicas; el tiempo de manejo; y los niveles de ingreso.

Otra forma de empleo es en el área del transporte turístico para analizar el mercado de los turistas extranjeros. Por ejemplo, E. Webster (1993), recurre al modelo gravitacional para predecir el flujo de turistas entre un par de países en función directa de la población de cada uno y en función inversa a la distancia entre ellos. Sin embargo, los últimos resultados de la investigación de Webster muestran que no es significativo el modelo debido a la variable distancia en

relación con el número de viajes. El tiempo de viaje pareciera ser un mejor factor de impedancia.

En general se presenta un comportamiento aceptable de las diferentes variantes del modelo gravitacional en su aplicación a los intercambios comerciales, pero aún así se ha cuestionado su empleo y se siguen buscando nuevas variables que ayuden a mejorar la validez del modelo en las áreas mencionadas en párrafos anteriores.

3.5 Modelo gravitacional utilizado en la investigación

En la presente investigación se utilizará el siguiente modelo gravitacional no acotado (Rico, 2001):

$$V_{ij} = \alpha \frac{(VG_i \cdot VA_j)^{\beta}}{D_{ij}^{\delta}} \qquad (3.10)$$

que también se puede expresar de la siguiente manera:

$$V_{ij} = \alpha \left[(VG_i)(VA_i) \right]^{\beta} (D_{ij})^{-\delta}$$
(3.11)

Donde:

 V_{ij} = cantidad de carga, en toneladas, que se transporta entre el origen i-ésimo y el destino j-ésimo

 α = parámetro de calibración del modelo

 VG_i = cantidad de carga generada en el nodo i-ésimo (en toneladas)

 VA_i = cantidad de carga atraída en el nodo j-ésimo (en toneladas)

β = parámetro de calibración del modelo

 D_{ij} = distancia entre el origen i-ésimo y el destino j-ésimo (factor de impedancia)

 δ = parámetro de calibración del modelo

Una de las características del modelo es que se tomó en cuenta la cantidad de toneladas de la carga y no el valor monetario de la misma, ya que según lo mencionado en el apartado 3.3 no se recomienda el empleo de la variable del valor de la carga para modelar la distribución de la misma. Adicionalmente cabe mencionar, que el modelo utilizado toma en cuenta la distribución de carga y no de viajes.

Una ventaja del modelo (3.11) es que se puede realizar el cálculo del valor de los parámetros de calibración (α , β y δ) por medio del método de regresión lineal múltiple (mínimos cuadrados), aplicando inicialmente logaritmo natural a ambas partes de la ecuación del modelo para obtenerlo en forma lineal (Teodorovic, 1988). De acuerdo con Joana Seguí (1991, citando a Potrykowski, *et al.* 1984), este método de utilizar el cálculo de la regresión lineal para estimar los parámetros del modelo gravitacional, se aplicó a un estudio de flujos interurbanos aéreos de pasajeros y a los flujos de carga interprovinciales por ferrocarril; ambos se llevaron a cabo en EE.UU.

Al linearizar el modelo gravitacional se obtiene la siguiente ecuación lineal:

$$Ln(V_{ij}) = \ln \alpha + \beta \ln [(VG_i)(VA_j)] - \delta \ln (D_{ij})$$
(3.12)

De esta forma se aplica el logaritmo natural del flujo de carga en los arcos [$In(V_{ij})$] como la variable dependiente; el logaritmo natural del producto de los volúmenes de carga generados y atraídos por el nodo origen i y el nodo destino j, ln [$(VG_i)(VA_j)$] de cada arco, representan a la primera variable independiente; y el logaritmo natural de la distancia entre el nodo i y el nodo j [ln D_{ij}], es la segunda variable independiente (Rico, 2001).

Adicionalmente, los coeficientes de regresión y correlación típicos del modelo de regresión lineal múltiple permiten analizar la bondad de ajuste del modelo calibrado contra la dispersión de los datos empíricos, lo cual es fundamental para la evaluación de la adecuación del modelo gravitacional al comportamiento observado de la distribución de carga en la red (Rico, 2001).

Debe decirse que una de las razones por las que se eligió el modelo gravitacional no acotado, es que en este estudio no se realizó ninguna estimación previa de los flujos generados por medio de un modelo de generación; y tampoco hubo estimación alguna para los flujos atraídos; por tal razón, no es necesario acotar el modelo con respecto a los flujos de carga generados y atraídos.

4 Obtención y análisis de la información empírica

4.1 La base de datos origen – destino de la DGAC, características, estructura y contenido para el año 2003

La principal fuente de información que se utilizó en la investigación fue la base de datos para el año 2003, generada por la Dirección General de Aeronáutica Civil (DGAC)², de la Secretaría de Comunicaciones y Transportes. Entre la información que contiene la base de datos se incluye la totalidad de los registros anuales de tráfico aéreo de carga entre pares de ciudades en México y en el extranjero efectuados en el 2003, siempre y cuando el origen o destino se localice en territorio mexicano. Estos últimos datos representan la información relevante para la presente investigación.

La información de la DGAC se encuentra almacenada originalmente en formato de Microsoft Excel y organizada en cuatro "hojas de cálculo" denominadas "Regular Nacional", "Fletamento Nacional", "Regular Internacional" y "Fletamento Internacional"; cada hoja de cálculo contiene una base de datos con los campos "Origen", "Destino", "Total de vuelos", "Total de pasajeros" y "Total de carga"; a manera de ejemplo, en la figura siguiente se muestra un extracto de la hoja "Regular Nacional".

Figura 4.1
Sección de la hoja de cálculo: "Carga Regular Nacional 2003"

	Α	В	С	D	Е
1	1 REGULAR NACIONAL 2003				
2			VUELOS	PASAJEROS	CARGA (kg)
3	ORIGEN	DESTINO	TOTAL	TOTAL	TOTAL
4	ACAPULCO	CD. JUAREZ	86	563	1,476
5	ACAPULCO	CUERNAVACA	65	123	39
6	ACAPULCO	CULIACAN	65	77	23
7	ACAPULCO	DEL BAJIO	86	106	1,205
abla				$\wedge \wedge \wedge \wedge$	$\langle \wedge \wedge \rangle$

Fuente: Elaboración personal con datos de la DGAC.

La hoja de cálculo "Regular Nacional" presenta los vuelos regulares nacionales efectuados en el año de referencia, y son aquellos que se realizan mediante rutas, itinerarios y frecuencias fijas en el ámbito nacional; a su vez la "Regular Internacional" muestra los vuelos regulares internacionales, que son aquellos que también se llevan a cabo en rutas, itinerarios y frecuencias fijas en el ámbito

31

² Esta base de datos se genera anualmente, y se encuentra disponible aproximadamente con un año de retraso respecto al de captación de los datos; por ejemplo, a mediados del 2004 se tiene disponible la base de datos del 2003.

internacional, pero que tienen como origen o destino un aeropuerto en territorio mexicano. Las dos hojas de cálculo restantes son "Fletamento Nacional" y "Fletamento Internacional"; la primera muestra los vuelos de fletamento nacional, que son aquellos que fueron contratados *ad hoc*, que no tienen rutas, itinerarios ni frecuencias fijas, y que prestan el servicio entre un origen y un destino localizados en territorio nacional; por último, la hoja "Fletamento Internacional" presenta los vuelos que tampoco tienen rutas, itinerarios y frecuencias fijas en el ámbito internacional, teniendo como origen o destino a México.

En la presente investigación se tomó como fuente de información la base de datos ya mencionada, con el fin de procesarla y obtener la información necesaria para alcanzar dos propósitos: primero, caracterizar los componentes y flujos de la red de transporte aéreo de carga en México; y segundo, calibrar y validar los modelos gravitacionales realizados durante la investigación. A continuación se describe el procedimiento mediante el cual se llevó a cabo la depuración de la base de datos.

4.2 Descripción del procesamiento de la base de datos

En cada una de las hojas de la base de datos 2003 de la DGAC, se tomaron sólo los campos que interesaban para la caracterización de la red de transporte aéreo de carga, y para la posterior calibración y validación de los modelos gravitacionales; estos campos fueron: "Origen", "Destino", y "Total de carga" para los servicios regular y de fletamento, ya sea domésticos o en el ámbito internacional; de esta forma se determinaron los flujos de carga en todos los pares origen-destino de las redes nacional e internacional. Para lo anterior fue necesario fusionar³ (agregar en un sólo registro) aquellos registros que tenían el mismo par origen-destino⁴.

Posteriormente se depuró la base de datos para obtener los siguientes nueve grupos de información:

- 1. Carga nacional regular
- 2. Carga nacional de servicio de fletamento
- 3. Carga nacional regular y de fletamento
- 4. Carga internacional regular
- 5. Carga internacional de servicio de fletamento
- 6. Carga internacional regular y de fletamento

32

³ Se sumó la carga para el par origen-destino que se repetía en los registros dentro de una misma hoja de cálculo, ya sea "Regular Nacional", "Regular Internacional", "Fletamento Nacional", o "Fletamento Internacional.

⁴ Este proceso se realizó mediante el uso de las llamadas "tablas dinámicas" de Microsoft Excel.

- 7. Carga regular nacional e internacional
- 8. Carga de fletamento nacional e internacional
- 9. Carga nacional e internacional regular y de fletamento

Figura 4.2
Universo de estudio, y su división en nueve grupos de información

Una de las razones de agrupar la información es formar grupos con cierta homogeneidad, ya sea por el tipo de servicio o por el ámbito (nacional o internacional); y otra razón es tomar en cuenta (grupos 7, 8 y 9) la carga tanto nacional como internacional de los aeropuertos, ya que el manejo de la carga de ambos ámbitos se realiza dentro de las mismas instalaciones, y los aeropuertos tienen a su vez relaciones con aeropuertos mexicanos e internacionales; por tanto, era importante formar grupos que lo tomaran en cuenta.

Como se puede observar en la figura 4.2., los grupos 3, 6, 7 y 8 contienen la información de carga aérea que pertenece al mismo ámbito (nacional o internacional), o al mismo tipo de servicio (regular o de fletamento), por ejemplo, el grupo 8 maneja carga que pertenece al ámbito nacional e internacional, pero que es solamente de fletamento. Finalmente el grupo 9 toma en cuenta toda la información; es decir, la carga nacional e internacional que pertenece tanto al servicio regular como de fletamento porque se buscaba llegar a modelar los principales flujos de carga que se da en la red aeroportuario mexicana, y estos debían incluir los dos tipos de servicios y el ámbito tanto nacional como internacional.

Otra de las finalidades por las que se agrupó la información era tratar de agregar la realidad registrada por la DGAC estudiando primero algunos de sus flujos, ya sea de servicio regular o de fletamento dentro del ámbito nacional o internacional por separado, y finalmente analizar los principales flujos y aeropuertos en su totalidad. La idea fue que esto permitiría saber si para todos los grupos de información era válida la analogía gravitacional, así como identificar el comportamiento de la carga en cada uno de los primeros ocho grupos de información; y finalmente ver el comportamiento de los principales flujos de toda la red aeroportuaria, que está representado con el grupo 9.

A continuación se explicará a manera de ejemplo, cómo se obtuvieron dos grupos de información. Para el grupo de información 3 (carga nacional regular y de fletamento) se fusionaron los registros que aparecían en los libros "Regular Nacional" y "Fletamento Nacional"; es decir, se sumó la carga tanto regular como de fletamento para cada uno de los pares origen-destino en México; así se obtuvo información agregada sobre el flujo nacional de carga; a continuación se muestra un extracto de la tabla en donde se realizó dicho procedimiento.

Figura 4.3
Suma de la carga regular y de fletamento nacional

		Regular nacional	Fletamento nacional	Total nac = regular nac + fletamento nac
ORIGEN	DESTINO	CARGA (ton)	CARGA (ton)	CARGA (ton)
MÉXICO	GUADALAJARA	6,922.164	1,157.505	8,079.669
GUADALAJARA	MÉXICO	5,842.139	1,006.624	6,848.763
MÉXICO	MONTERREY	4,631.696	20.303	4,651.999
MÉRIDA	MÉXICO	1,922.039	2,321.299	4,243.338

Fuente: Elaboración propia con datos de la DGAC

Figura 4.4
Suma de la carga regular y de fletamento internacional

		Regular internacional	Fletamento internacional	Total int = regular int + fletamento int
ORIGEN	DESTINO	CARGA (ton)	CARGA (ton)	CARGA (ton)
LUXEMBURGO	MÉXICO	12937.300	12872.770	25810.070
ÁMSTERDAM	MÉXICO	20603.414	0.000	20603.414
LOS ÁNGELES	MÉXICO	13742.405	3409.532	17151.937
GUADALAJARA	MEMPHIS	15461.607	へへへ ^{83.541}	15545,148

Fuente: Elaboración personal con datos de la DGAC

Para el grupo de información 6 (carga internacional regular y de fletamento) se fusionaron los libros "Regular Internacional" y "Fletamento Internacional" con el fin de obtener la información agregada del flujo internacional de carga para cada uno

de los pares origen-destino; a continuación se muestra un extracto de la tabla resultante.

El procedimiento anterior se repitió para cada uno de los grupos de información, obteniendo una tabla independiente por cada grupo que más tarde serviría para formar las redes y alimentar los modelos gravitacionales.

Para la presente investigación, los flujos de carga se asocian a cada par origen – destino, mismos que constituyen los arcos en las redes; estas redes contendrán a su vez a los aeropuertos que son representados por nodos.

4.3 Categorización de los enlaces por la técnica de Pareto

El "Principio" o "Regla de Pareto" lo desarrolló el economista italiano Wilfredo Pareto (1848-1923), quien en un estudio realizado hacia 1900 encontró que en la mayoría de los países, alrededor de 80% de la riqueza se concentra en una minoría, de aproximadamente 20% de la población⁵. La aplicación de la regla de Pareto (también conocida como regla 80/20) en campos distintos a la economía, sostiene que en muchos fenómenos un porcentaje pequeño de sus elementos constitutivos es vital (20%), y un porcentaje grande (80%) es trivial. Así, la regla de Pareto establece que un número pequeño de causas es responsable de un gran porcentaje de los efectos en una razón 20:80. La validez de este principio se ha probado en muchas áreas, incluyendo al transporte; e incluso se utiliza como criterio de clasificación para la toma de decisiones en algunos procesos de ingeniería y análisis logístico, recibiendo el nombre de "técnica de clasificación ABC" (Ballou, 1992).

En este estudio, al encontrar que en muchos de los arcos se transportó muy poca carga y que parecían eventos fortuitos, se aplicó la regla de Pareto a cada uno de los nueve grupos de información (sección 4.2), con la intención de establecer una categorización de los datos que permitiera eliminar aquellos que no aportan información relevante para determinar los principales patrones de distribución de carga, y que a su vez presentan un comportamiento con alta variación (basado en Rico, 2001).

De esta manera, en cada uno de los nueve grupos se clasificaron los arcos (pares origen-destino) de acuerdo con su orden de importancia; es decir, de mayor a menor en términos de su flujo de carga total (en toneladas), y se calculó la participación porcentual acumulada de cada uno de los arcos con respecto al total. De esta forma, los arcos en donde se transportó 80% de la carga se etiquetaron con la letra A; los siguientes arcos, hasta 95% se etiquetaron con la letra B; y el

35

⁵ En los estudios de Pareto, esta proporción se mantuvo aproximadamente constante para diferentes épocas y sociedades; lo cual llevó a creer que se trataba de una ley de validez general, lo que se refutó posteriormente por otros investigadores.

resto con la letra C (Ballou, 1992). Posteriormente se hicieron gráficas de Pareto para cada uno de lo grupos.

A continuación se muestra un extracto de dicho procedimiento para el grupo de información 4 (carga internacional regular).

Cuadro 4.1

Extracto de la tabla que contiene el procedimiento para la aplicación de la técnica de Pareto en la red de carga internacional regular

ARCO	ORIGEN	DESTINO	CARGA TOTAL (ton)	% ACUMULADO ARCOS	% ACUMULADO CARGA	CLASIFI- CACIÓN DE PARETO
1	Ámsterdam	México	20,603.414	6.417481%	6.417481%	Α
2	Guadalajara	Memphis	15,461.607	4.815928%	11.233409%	Α
3	París	México	13,956.167	4.347019%	15.580428%	Α
4	Los Ángeles	México	13,742.405	4.280437%	19.860865%	Α
i	:	:	÷	:	:	ŧ
39	Austin	Monterrey	2,452.977	0.764045%	81.103186%	Α
40	Chicago	México	2,255.032	0.702390%	81.805575%	В
41	Guadalajara	Cincinnati	2,096.146	0.652900%	82.458476%	В
42	México	Santiago de Chile	2,087.348	0.650160%	83.108636%	В
43	Guadalajara	Luxemburgo	2,010.468	0.626214%	83.734849%	В
÷	i i	:	:	:	ŧ	÷
81	Dayton	México	520.310	0.162064%	95.126914%	В
82	México	San Salvador	513.711	0.160009%	95.286923%	О
83	Guadalajara	Sao Paulo	513.670	0.159996%	95.446919%	С
84	México	Dayton	493.201	0.153621%	95.600539%	С
85	México	Santa Cruz	464.517	0.144686%	95.745225%	С
i	:			:	:	i
366	Oakland	Zacatecas	0.001	0.000000%	100.000000%	С

Fuente: Elaboración personal con datos de la DGAC

El mismo procedimiento se realizó para los arcos contenidos en las tablas de los ocho grupos de información restantes.

Al corroborar que existía una alta concentración de la carga en unos cuantos arcos, y que ese fenómeno se repetía en cada grupo de información, se decidió tomar la red que resultaba de elegir los arcos en donde se transportó 95% de la carga, y los nodos de donde se originó o tenía como destino ese 95% de carga; esto dio como resultado que se discriminaran todos aquellos arcos donde se

transportó únicamente 5% de la carga, y se construyeron nueve redes básicas⁶ que se titularon con el mismo nombre del grupo de información del que procedían.

- 1. Red de carga nacional regular
- 2. Red de carga nacional de servicio de fletamento
- 3. Red de carga nacional regular y de fletamento
- 4. Red de carga internacional regular
- 5. Red de carga internacional de servicio de fletamento
- 6. Red de carga internacional regular y de fletamento
- 7. Red de carga regular nacional e internacional
- 8. Red de carga de fletamento nacional e internacional
- 9. Red de carga nacional e internacional regular y de fletamento

Al aplicar la regla de Pareto no se observa la curva paretiana clásica (la regla 80/20), sino una aproximación a ésta; por tal razón, se decidió tomar los arcos donde se transportaron 95% y no 80% de la carga.

Una vez que se obtuvieron las nueve redes básicas en cuanto al flujo de carga en los arcos origen-destino, se representó geográficamente la parte nacional e internacional mediante el uso del software ArcView⁷, tal como se describe en la siguiente sección.

4.4 Representación digital de la información geográfica

Una vez que se tuvieron los registros de información etiquetados de acuerdo con el arco al que correspondía, y a los dos nodos (aeropuertos) de donde procedía y tenía destino la carga respectivamente, se realizó la georreferenciación de esos nodos (aeropuertos) y arcos (pares origen destino), y se les adjuntaron los flujos de carga nacional y parte de los flujos internacionales, así como la información desagregada de los flujos de entrada, salida y totales. Lo anterior se realizó para obtener una red nacional (incluye carga regular y de fletamento), y otra internacional (incluye carga regular solamente) de manera que se pudiera hacer el análisis espacial y visualizar cada una de las redes por separado, o en conjunto, en el momento que se requiriera hacer el análisis de su totalidad.

⁷ Sistema de Información Geográfica (SIG), elaborado por la compañía desarrolladora de software ESRI.

⁶ Esta clasificación de las redes la desarrollo el M. en I. Óscar Rico; para más detalles, ver su publicación 168 del IMT (Rico, 2001).

A continuación se hará una breve descripción de lo que es un SIG y su importancia para el análisis espacial de las redes de transporte.

Las definiciones tradicionales describen a los SIG como un conjunto de *hardware*, *software*, datos, personas y procedimientos; organizados para capturar, almacenar, actualizar, manejar, analizar y desplegar eficientemente rasgos de información referenciados geográficamente.

Lo que distingue a un SIG de una base tradicional de datos, es que los respectivos atributos están asociados a un objeto topológico (punto, línea, polígono), y registran una ubicación geográfica precisa (Simkowitz, 1988).

A través de los SIG, los mapas pueden ser integrados y correlacionados fácilmente con múltiples datos. De hecho, mediante un campo común de referencia, cualquier problema representado en un mapa puede analizarse varias veces. Al contrario de lo que sucede con mapas tradicionales, los mapas en un SIG cambian dinámicamente en la medida que los datos alfanuméricos son actualizados.

En la práctica, un SIG puede mapear cualquier información almacenada en bases de datos o tablas que tengan un componente geográfico, lo cual posibilita visualizar patrones, relaciones y tendencias. La ventaja del empleo de los SIG en el transporte, se relaciona con tres funciones primordiales: integración de los datos; análisis geográfico de la información; y despliegue y representación espacial de la misma (Backhoff, 2005).

A continuación se presentan algunas imágenes de la red elaborada y georreferenciada en ArcView.

Figura 4.5

Digitalización y georreferenciación de los aeropuertos nacionales; se incluye la carga nacional regular y de fletamento que manejaron los aeropuertos en el año 2003

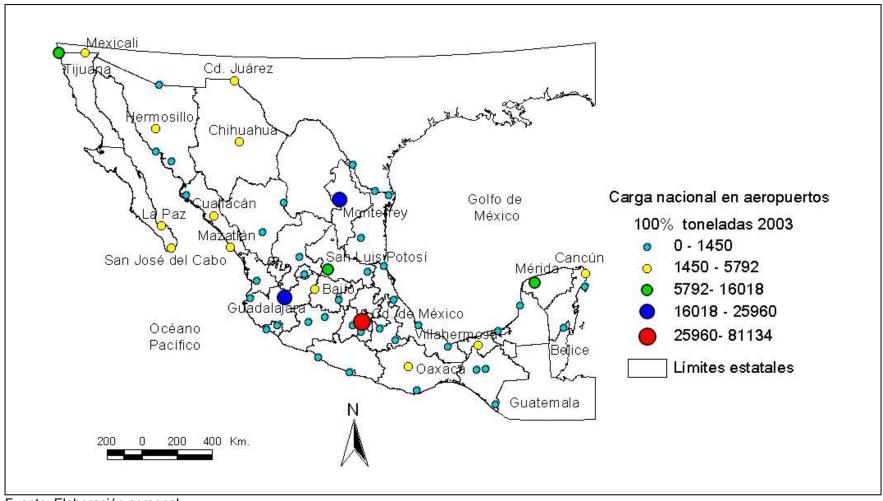


Figura 4.6
Digitalización y georreferenciación de los aeropuertos nacionales, tomando en cuenta solamente la carga internacional regular y de fletamento que manejaron en el año 2003

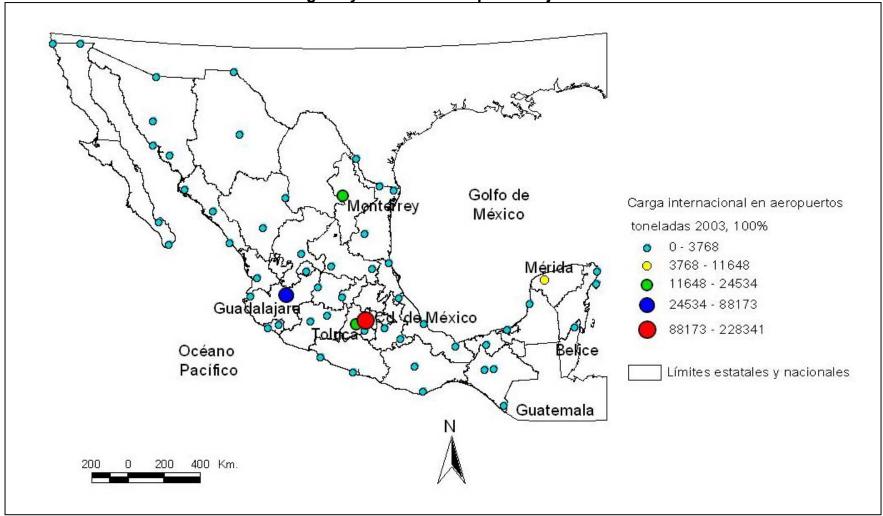


Figura 4.7

Digitalización y georreferenciación de los aeropuertos nacionales, tomando en cuenta tanto la carga nacional como internacional regular y de fletamento que manejaron en el año 2003

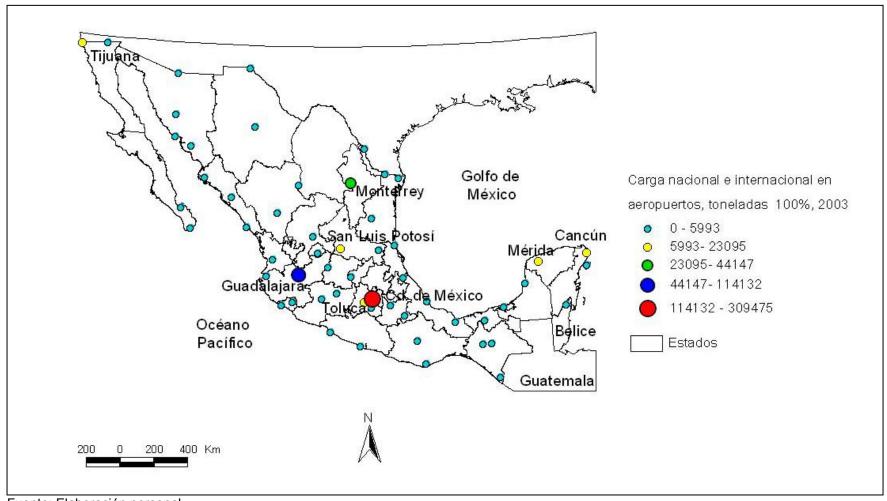


Figura 4.8

Digitalización y georreferenciación del 100% del flujo de carga nacional para el año 2003, representado el flujo como arcos y los aeropuertos nacionales como nodos

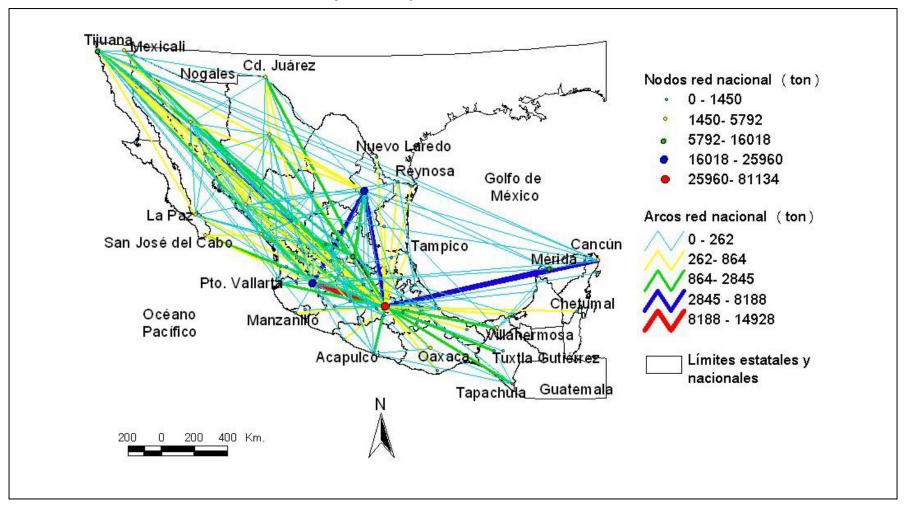


Figura 4.9

Digitalización y georreferenciación del 95% del flujo de carga nacional para el año 2003, representado el flujo como arcos y los aeropuertos nacionales como nodos

Figura 4.10

Digitalización y georreferenciación de los aeropuertos nacionales e internacionales de la red internacional regular 2003

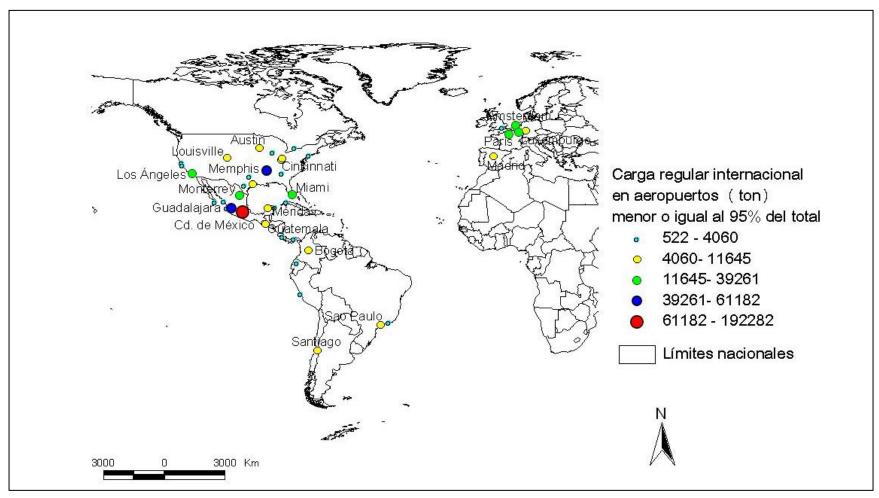
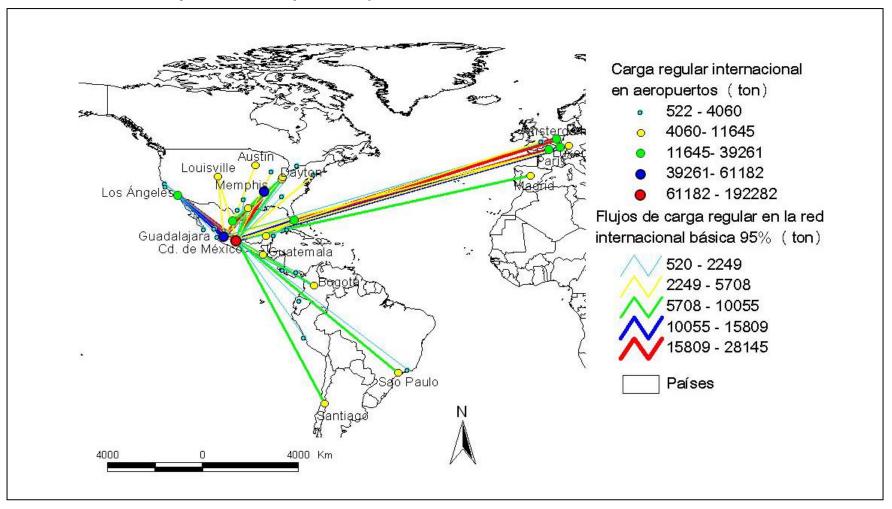



Figura 4.11

Digitalización y georreferenciación del 95% del flujo de carga internacional regular para el año 2003, representado el flujo como arcos y los aeropuertos nacionales e internacionales como nodos

5 La red de transporte aéreo de carga en México

En este capítulo se realiza un descripción de la red aeroportuaria con el objetivo de brindar un panorama de la misma, antes de modelar la distribución de los principales flujos de carga en el capítulo 6; es decir, previo a verificar a través de la estimación del modelo gravitacional, si influye la proximidad espacial (distancia euclidiana, medida en km) de los aeropuertos sobre la intensidad (medida en toneladas de carga anuales) de las relaciones que se dan entre ellos; además que la modelación gravitacional de la presente investigación requiere el conocimiento previo de la distancia euclidiana entre los aeropuertos origen-destino; misma que se calcula a través de la abstracción de la red aeroportuaria (representándola con nodos y arcos) y del cálculo de la longitud de los arcos dentro de la red. A su vez, de acuerdo con el tamaño (medido en términos de la carga que maneja el aeropuerto anualmente) de los aeropuertos y las relaciones que se dan entre ellos, se pueden definir sus jerarquías dentro de la red aeroportuaria ya sea con el método Nystuen-Dacey, o aplicando la regla rango-tamaño, tal como se presenta en las últimas dos secciones del presente capítulo.

5.1 Orígenes, destinos y enlaces detectados por el procesamiento de la base de datos de los viajes realizados en 2003

A continuación se describen los principales flujos de carga registrados en el 2003, tanto en el ámbito nacional como internacional, utilizando en algunas secciones mapas realizados en ArcView para facilitar la visualización de la red aeroportuaria y de algunos flujos de carga.

5.1.1 Red nacional

La red nacional (para carga doméstica regular y de fletamento) contó en el 2003 con 62 nodos (aeropuertos) y 224 arcos.

Al analizar los resultados de aplicar la regla de Pareto, como técnica de análisis y clasificación, se observó que en el ámbito nacional (incluye carga regular y de fletamento) hay una gran concentración en unos cuantos arcos, ya que 80.4 % (87,472.3 ton) de la carga se transportó únicamente en 12.9 % (29) de los arcos; 95.0% (103,361.2 ton) de la carga se transportó en 28.1 % (63) de los arcos y el complementario 5.0% (5,423.8 ton) de la carga restante se transportó en 71.9% (161) de los arcos; tal como se muestra en la figura 5.1.

A partir de la concentración observada en los datos, se realizaron análisis generales sobre la movilidad de mercancías por transporte aéreo, utilizando sólo 95% de la carga y prescindiendo de 5% de la carga restante en cada una de las redes nacionales, bajo el supuesto de que ese 5% que se le restó a los

aeropuertos los afectaría en forma no significativa durante la modelación gravitacional, ya que ese porcentaje es muy bajo y está representado por la carga que se transportó en forma inconsistente, o en situaciones tal vez fortuitas.

Participación acumulada de los arcos de la red nacional, año 2003 100% **4cumulado de la carga** 80% 60% 40% 20% 0% 20 40 60 80 100 120 140 160 180 200 220 Arcos en la red

Figura 5.1
Concentración de la carga en la red nacional

Fuente: Elaboración personal

A continuación se describirá una de las redes que se obtuvieron al aplicar la regla de Pareto para el ámbito nacional.

5.1.2 Red básica nacional (red de carga nacional regular y de fletamento)

Como ya se mencionó, la red básica nacional contiene los arcos y nodos en donde se transportó 95% de la carga en el 2003.

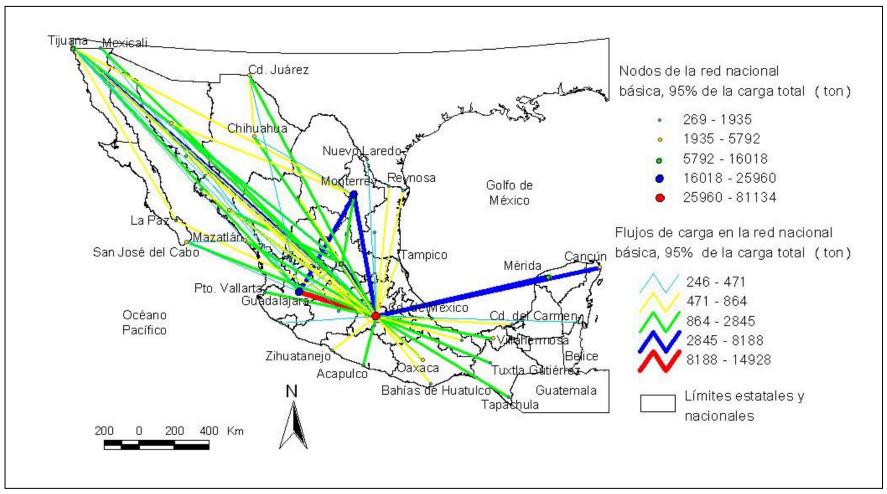
La red básica nacional está conformada por 63 arcos y 42 nodos (aeropuertos), tal como se muestra en los cuadros 5.1 y 5.2, mismos que se pueden visualizar en forma georreferenciada en la figura 5.2.

Como se observa en el cuadro 5.1, el arco con mayor flujo de carga es el de México-Guadalajara, en donde además se aprecia una simetría en los flujos hacía cada sentido (México-Guadalajara = 54.1% de la carga total del arco, y Guadalajara- México = 45.9% de la carga total del arco). En las siguientes cuatro posiciones jerárquicas tenemos los arcos de Mérida-México (2°); México-Monterrey (3°); México-Tijuana (4°); Monterrey-Guadalajara (5°); y San Luis Potosí- México (6°); que representan los corredores de carga aérea doméstica con

un mayor flujo de carga en comparación con el resto, a la vez que mantienen una simetría en los flujos en ambas direcciones, por tanto es de suponerse la existencia de una fuerte relación entre los aeropuertos origen y destino de dichos arcos.

Cuadro 5.1

Arcos (enlaces) de la red de carga nacional regular y de fletamento, en donde se tomó en cuenta solamente 95% de la carga total


ARCO	ORIGEN	DESTINO	FLUJO O – D (toneladas)	FLUJO O – D (%)	FLUJO D – O (toneladas)	FLUJO D – O (%)	FLUJO TOTAL (toneladas)
1	México	Guadalajara	8,079.669	54.1	6,848.763	45.9	14,928.432
2	Mérida	México	4,243.338	51.8	3,944.809	48.2	8,188.147
3	México	Monterrey	4,651.999	59.8	3,123.538	40.2	7,775.537
4	México	Tijuana	3,854.633	52.2	3,536.382	47.8	7,391.015
5	Monterrey	Guadalajara	3,256.647	53.0	2,893.020	47.0	6,149.667
6	San Luis Potosí	México	2,602.913	47.0	2,425.756	53.0	5,028.669
7	México	Cancún	3,620.053	76.1	1,136.045	23.9	4,756.098
8	San Luis Potosí	Monterrey	1,666.784	58.6	1,178.023	41.4	2,844.807
9	México	Villahermosa	1,810.332	74.6	615.093	25.4	2,425.425
10	México	Chihuahua	1,398.124	67.2	683.728	32.8	2,081.852
11	Guadalajara	Tijuana	1,023.555	50.6	998.662	49.4	2,022.217
12	México	Hermosillo	1,232.628	74.7	417.114	25.3	1,649.742
13	Tijuana	Hermosillo	1,362.388	84.6	248.297	15.4	1,610.685
14	San Luis Potosí	Culiacán	1,289.766	82.7	269.115	17.3	1,558.881
15	México	Mexicali	1,145.736	77.4	334.287	22.6	1,480.023
16	México	Oaxaca	890.218	61.2	563.378	38.8	1,453.596
17	México	Cd. Juárez	969.026	66.9	480.167	33.1	1,449.193
18	México	Tuxtla Gutiérrez	1,215.371	84.3	225.629	15.7	1,441.000
19	México	Culiacán	884.409	63.7	503.135	36.3	1,387.544
20	México	San José del Cabo	1,233.980	90.5	130.199	9.5	1,364.179
21	México	Del Bajío	939.853	69.6	409.838	30.4	1,349.691
22	México	Pto. Vallarta	1,114.608	83.4	221.798	16.6	1,336.406
23	Tapachula	México	747.395	59.4	511.064	40.6	1,258.459
24	México	Veracruz	1,075.102	86.3	171.051	13.7	1,246.153
25	San Luis Potosí	Hermosillo	965.811	79.0	256.773	21.0	1,222.584
26	México	Acapulco	1,048.906	85.9	172.563	14.1	1,221.469
27	México	Mazatlán	675.534	59.8	454.207	40.2	1,129.741
28	Monterrey	Tijuana	487.778	56.4	376.330	43.6	864.108
29	México	Tampico	736.067	85.9	120.912	14.1	856.979
30	La Paz	México	444.334	53.7	382.580	46.3	826.914
31	México	Torreón	495.476	67.8	235.429	32.2	730.905
32	Cuernavaca	Tijuana	376.942	54.3	317.537	45.7	694.479
33	Oaxaca	Tijuana	624.314	96.9	20.106	3.1	644.420

ARCO	ORIGEN	DESTINO	FLUJO O – D (toneladas)	FLUJO O – D (%)	FLUJO D – O (toneladas)	FLUJO D – O (%)	FLUJO TOTAL (toneladas)
34	México	Reynosa	351.126	54.8	289.098	45.2	640.224
35	México	Zihuatanejo	559.441	91.3	53.636	8.7	613.077
36	México	Aguascalientes	516.294	87.4	74.518	12.6	590.812
37	México	Ciudad del Carmen	465.551	79.9	117.419	20.1	582.970
38	La Paz	Tijuana	367.262	63.6	210.252	36.4	577.514
39	Cd. Juárez	Chihuahua	320.405	56.7	245.056	43.3	565.461
40	México	Matamoros	289.537	51.5	273.208	48.5	562.745
41	México	Minatitlán	445.960	85.1	77.825	14.9	523.785
42	Monterrey	Hermosillo	381.457	74.6	129.937	25.4	511.394
43	Los Mochis	México	264.468	52.7	237.385	47.3	501.853
44	Del Bajío	Tijuana	276.634	55.2	224.260	44.8	500.894
45	México	Ciudad Obregón	292.958	58.7	206.220	41.3	499.178
46	México	Bahías de Huatulco	386.180	80.0	96.398	20.0	482.578
47	Guadalajara	Hermosillo	306.902	65.2	163.822	34.8	470.724
48	Nuevo Laredo	México	368.282	81.9	81.584	18.1	449.866
49	México	Chetumal	359.650	85.7	60.189	14.3	419.839
50	Mazatlán	San José del Cabo	357.033	89.6	41.298	10.4	398.331
51	San Luis Potosí	Guadalajara	303.988	76.3	94.323	23.7	398.311
52	Guadalajara	Mexicali	296.946	77.6	85.495	22.4	382.441
53	Guadalajara	San José del Cabo	322.792	85.3	55.661	14.7	378.453
54	Monterrey	Chihuahua	210.943	59.1	145.893	40.9	356.836
55	Tijuana	Culiacán	191.055	59.6	129.292	40.4	320.347
56	Tijuana	Morelia	173.260	55.0	141.777	45.0	315.037
57	México	Saltillo	198.121	66.2	101.026	33.8	299.147
58	Guadalajara	Cd. Juárez	150.443	52.4	136.543	47.6	286.986
59	México	Manzanillo	205.313	72.8	76.535	27.2	281.848
60	Tijuana	Aguascalientes	226.894	81.8	50.634	18.2	277.528
61	México	Durango	236.415	86.4	37.246	13.6	273.661
62	México	Ciudad Victoria	234.879	87.4	33.781	12.6	268.660
63	Tijuana	San Luis Potosí	150.274	57.4	111.485	42.6	261.759
		TOTALES	65,374.15		37,987.12		103,361.28

Fuente: Elaboración personal con datos de la DGAC

Figura 5.2

Georreferenciación de la red de carga nacional regular y de fletamento del 2003, representado el flujo como arcos y los aeropuertos nacionales como nodos

Cuadro 5.2

Nodos (aeropuertos) de la red de carga nacional regular y de fletamento, en donde se tomó en cuenta solamente 95% de la carga total

NODO NODO 1 México 49,196.327 3,0551.085 2 Guadalajara 11,936.744 13,080.487	79747.412 25,017.231 18,502.349 15,726.022
	25,017.231 18,502.349
2 Caadaajara 11,000.717 10,000.707	18,502.349
3 Monterrey 8,638.386 9,863.963	·
4 Tijuana 7,835.319 7,890.703	
5 San Luis Potosí 6,940.747 4,374.264	11,315.011
6 Mérida 4,243.338 3,944.809	8,188.147
7 Hermosillo 1,215.943 4,249.186	5,465.129
8 Cancún 1,136.045 3,620.053	4,756.098
9 Culiacán 901.542 2,365.230	
	3,266.772
10 Chihuahua 1,074.677 1,929.472	3,004.149
11 Villahermosa 615.093 1,810.332	2,425.425
12 Cd. Juárez 937.115 1,364.525	2,301.640
13 San José del Cabo 227.158 1,913.805	2,140.963
14 Oaxaca 1,187.692 910.324	2,098.016
15 Mexicali 419.782 1,442.682	1,862.464
16 Del Bajío 686.472 1,164.113	1,850.585
17 Mazatlán 1,009.340 764.751	1,774.091
18 Tuxtla Gutiérrez 225.629 1,215.371	1,441.000
19 La Paz 811.596 592.832	1,404.428
20 Pto. Vallarta 221.798 1,114.608	1,336.406
21 Tapachula 747.395 511.064	1,258.459
22 Veracruz 171.051 1,075.102	1,246.153
23 Acapulco 172.563 1,048.906	1,221.469
24 Aguascalientes 125.152 743.188	868.340
25 Tampico 120.912 736.067	856.979
26 Torreón 235.429 495.476	730.905
27 Cuernavaca 376.942 317.537	694.479
28 Reynosa 289.098 351.126	640.224
29 Zihuatanejo 53.636 559.441	613.077
30 Ciudad del Carmen 117.419 465.551	582.970
31 Matamoros 273.208 289.537	562.745
32 Minatitlán 77.825 445.960	523.785
33 Los Mochis 264.468 237.385	501.853

	NODO	CARGA QUE SALE DEL NODO	CARGA QUE LLEGA AL NODO	CARGA TOTAL (toneladas)
34	Ciudad Obregón	206.220	292.958	499.178
35	Bahías de Huatulco	96.398	386.180	482.578
36	Nuevo Laredo	368.282	81.584	449.866
37	Chetumal	60.189	359.650	419.839
38	Morelia	141.777	173.260	315.037
39	Saltillo	101.026	198.121	299.147
40	Manzanillo	76.535	205.313	281.848
41	Durango	37.246	236.415	273.661
42	Ciudad Victoria	33.781	234.879	268.660
	TOTALES	103,607.30	103607.295	207214.59

Fuente: Elaboración personal con datos de la DGAC

Como se puede observar en el cuadro 5.2, el aeropuerto de la Ciudad de México contabiliza el mayor flujo de carga doméstica de todas las terminales nacionales; con nitidez supera al de Guadalajara, que es el que sigue en la jerarquía (cuadro 5.2); no es de extrañarse que si esto continúa así, seguirá habiendo consecuencias negativas inherentes a un sólo centro demasiado saturado.

Al ser la Ciudad de México la capital del país, y al tener concentrada la mayor parte de las actividades económicas, políticas, sociales y culturales, su aeropuerto se ha convertido en un punto estratégico para el arribo de las mercancías con origen internacional, o para el envío de mercancías a nivel doméstico al resto de las ciudades del país; ello contribuye a hacer de la terminal de la Ciudad de México un centro nodal básico, emisor y receptor de grandes cantidades de carga aérea (figuras 5.3 y 5.4.). Se podría denominar a las instalaciones de la Ciudad de México el núcleo del sistema aeroportuario de carga doméstica a nivel nacional, ya que la red que se forma es principalmente radial y tiene como centro a ese aeropuerto; además, que por la posición geográfica de la Ciudad de México, se ubica en la región central del país.

Figura 5.3

Subred "arcos que inician en el aeropuerto de la Cd. de México". Flujos de salida de la carga doméstica del aeropuerto de la Ciudad de México dentro de la red de carga nacional regular y de fletamento, 2003

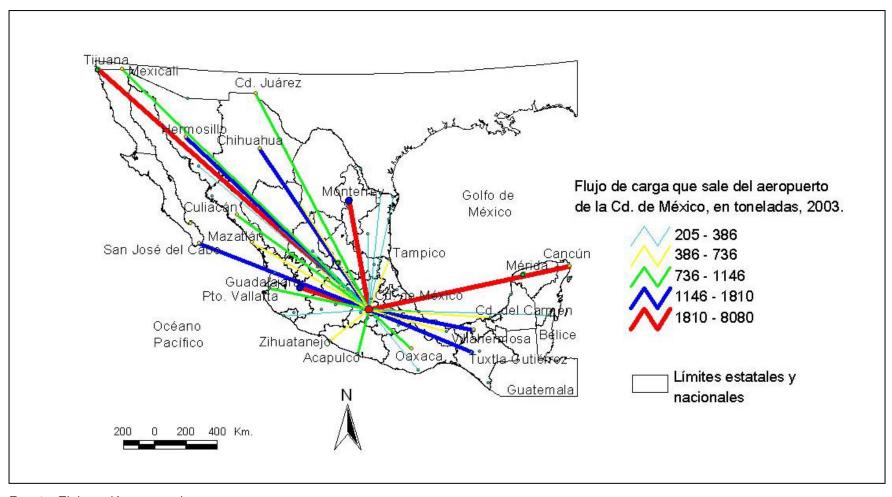
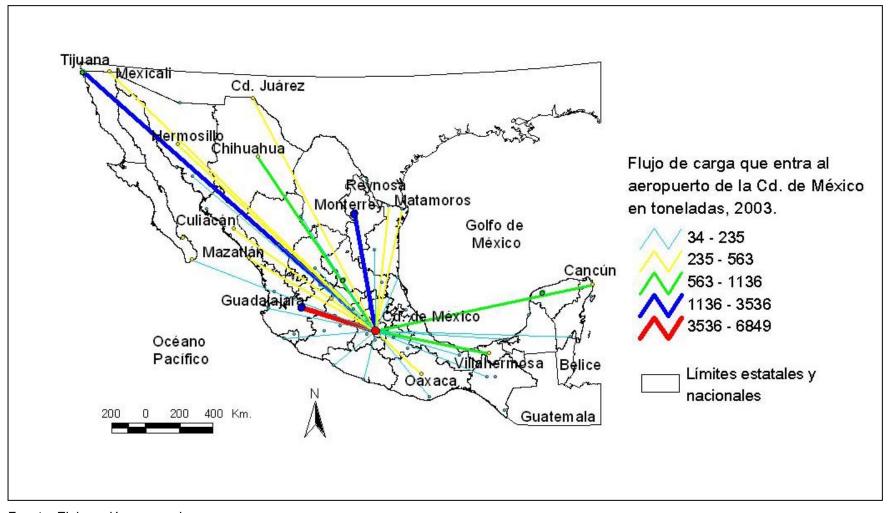



Figura 5.4

Subred "arcos que terminan en el aeropuerto de la Cd. de México". Flujos de carga doméstica que llegan al aeropuerto de la Ciudad de México dentro de la red de carga nacional regular y de fletamento, 2003

Los aeropuertos de Guadalajara y Monterrey ocupan el segundo y tercer lugares, respectivamente, de la jerarquía aeroportuaria en términos de su flujo doméstico de carga. Una de las variables que propician el alto volumen de flujo de carga aérea en esas terminales es el hecho de que se encuentran importantes zonas industriales en su *hinterland*. En la figura 5.5 se pueden ver los flujos de carga doméstica que proceden del aeropuerto de Guadalajara y los que tienen como destino al mismo; los principales aeropuertos con los que interactúa son: México; Monterrey; Tijuana; y San Luis Potosí. En la figura 5.6 se muestran los flujos de carga doméstica del aeropuerto de Monterrey, y se puede observar que este aeropuerto interactúa principalmente con los de México; Guadalajara; San Luis Potosí; y Tijuana.

Figura 5.5

Subred "arcos del aeropuerto de Guadalajara" de la red de carga nacional regular y de fletamento, en donde se representa la carga que salió y entró al aeropuerto de Guadalajara en 2003

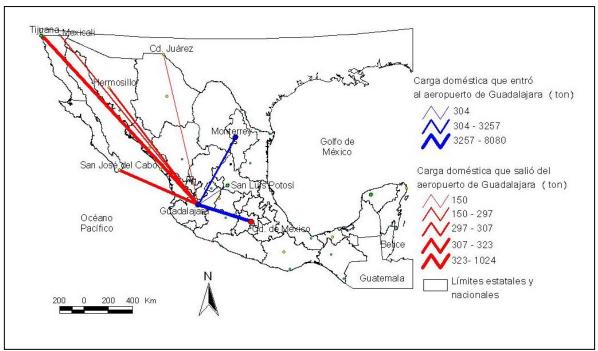


Figura 5.6

Subred "arcos del aeropuerto de Monterrey" de la red de carga nacional regular y de fletamento, en donde se representa la carga que salió y entró al aeropuerto de Monterrey en 2003

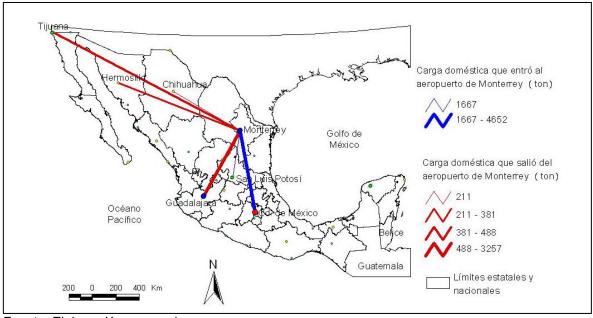
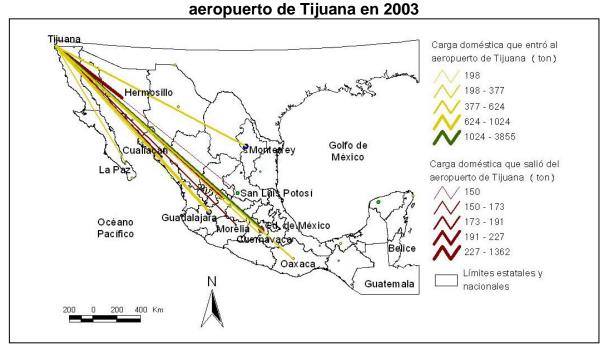



Figura 5.7

Subred "arcos del aeropuerto de Tijuana" de la red de carga nacional regular y de fletamento, en donde se representa la carga que salió y entró al

El aeropuerto de Tijuana ocupa el cuarto lugar (figura 5.7), y tiene interacciones principalmente con los de México, Guadalajara, Hermosillo y Monterrey.

El quinto lugar corresponde al aeropuerto de San Luis Potosí; cabe destacar que éste ha aumentado considerablemente su flujo de carga en el ámbito nacional debido a que la empresa de mensajería y paquetería Estafeta Mexicana, S.A. de C.V., desde el 2001 mantiene su centro logístico de operaciones; a nivel nacional, ha aumentado los movimientos de carga dentro del mismo (figura 5.8).

Figura 5.8

Operaciones de carga aérea de la empresa Estafeta Mexicana en el Aeropuerto de San Luis Potosí

En forma general, la jerarquía presenta una clara estructuración, con diferencias marcadas de sus integrantes. La separación entre los primeros lugares y los últimos es amplia (entre los aeropuertos de la Ciudad de México; Monterrey; Guadalajara; Tijuana; San Luis Potosí; y el resto de las terminales).

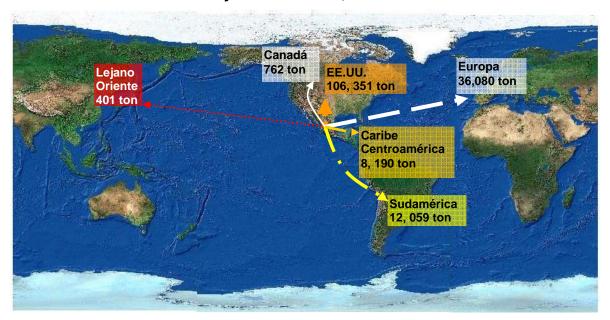
5.1.3 Red internacional

La red internacional para carga regular y de fletamento contó en el 2003 con 133 nodos (aeropuertos) y 366 arcos.

Para realizar un análisis global del total de los flujos de la carga internacional regular y de fletamento, se establecieron seis regiones para los aeropuertos internacionales y posteriormente se calculó la cantidad de toneladas de carga que tenían como origen o destino esas regiones; al final se obtuvo la información que se muestra en el cuadro 5.3, y en las figuras 5.9 y 5.10.

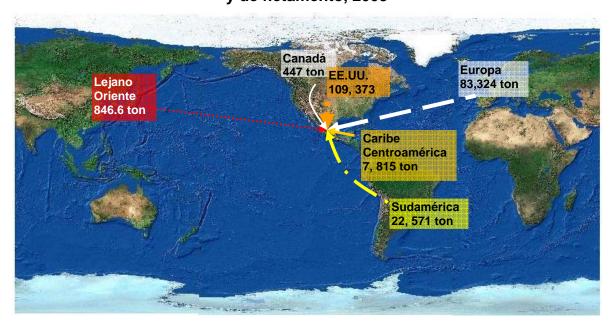
Cuadro 5.3

Regiones de origen y destino de la carga internacional regular y de fletamento para el 2003


Región origen	Región destino	Carga total (ton)
Estados Unidos	México	109372.916
Europa	México	83323.998
Sudamérica	México	22571.436
Centroamérica y Caribe	México	8190.090
Canadá	México	761.819
Lejano Oriente	México	400.797
México	Estados Unidos	106351.065
México	Europa	36080.441
México	Sudamérica	12058.818
México	Centroamérica y Caribe	7815.002
México	Lejano Oriente	846.592
México	Canadá	447.161

Fuente: Elaboración personal con datos de la DGAC

En el cuadro 5.3 se puede observar una fuerte interacción entre los aeropuertos mexicanos y los estadounidenses; esto se debe a la enorme importancia de los intercambios comerciales entre los dos países, pero también es posible que la cifra se vea incrementada por el hecho de que en Estados Unidos se encuentran importantes hubs aéreos internacionales; y parte de la carga que se dirige a ellos pudiera tener un destino final en otra parte del mundo, y sólo cambia de avión en el territorio estadounidense; lo anterior se desconoce ya que sólo se registra en las estadísticas de la DGAC el aeropuerto inmediato de destino de la carga; por tanto, la información que se empleó para el análisis no permite conocer el destino final de la carga. Pero la suposición que se presenta se basa en los resultados que se obtuvieron de la revisión de las estadísticas proporcionadas por el INEGI (2003) de la carga transportada por el modo aéreo en el 2003; aunque la unidad de medida de la carga en la base de datos no es estándar para todos los flujos (ya que para algunos utilizan el valor monetario de la carga, las toneladas, y número de bultos, entre otros); por tal motivo, no fue posible encontrar la cantidad exacta de toneladas de carga que sólo están de paso en aeropuertos de EE.UU. pero sí se encontró que existen algunos destinos en regiones que no contempla la DGAC porque como ya se dijo, tal vez esa carga se cambió de avión en algún *hub* norteamericano.


Figura 5.9

Exportaciones de México a través del transporte aéreo en el servicio regular y de fletamento, 2003

Fuente: Elaboración personal con datos de la DGAC

Figura 5.10
Importaciones de México a través del transporte aéreo en el servicio regular y de fletamento, 2003

Fuente: Elaboración personal con datos de la DGAC

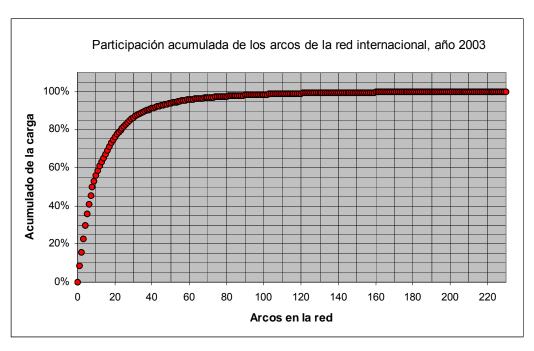
En los cuadros 5.4 y 5.5 se muestra la interacción de algunos aeropuertos mexicanos con las seis regiones en el mundo, divididos en el flujo de exportación y de importación de carga internacional (regular y de fletamento).

Cuadro 5.4 Flujo de carga aérea internacional de las exportaciones del año 2003

	Best's de de caportación	
Origen (aeropuerto mexicano)	Región de destino	Carga (ton)
Guadalajara	Caribe y Centroamérica	2
	Sudamérica	1340
	Estados Unidos	33723
	Europa	9334
México	Canadá	442
	Caribe Centroamérica	7641
	Sudamérica	10528
	Estados Unidos	37658
	Europa	25176
	Asia (Lejano Oriente)	847
Monterrey	Canadá	0.449
	Caribe y Centroamérica	111
	Sudamérica	8
	Estados Unidos	11687
	Europa	1075
Tijuana	Caribe y Centroamérica	0.005
	Estados Unidos	101
Toluca	Estados Unidos	9924
Total general		149597

Fuente: Elaboración personal con datos de la DGAC

Cuadro 5.5
Flujo de carga aérea internacional de las importaciones del año 2003


Región de origen	Aeropuerto mexicano de destino	Carga total (ton)
Canadá		92
	México	670
	Monterrey	0
Total Canadá		762
Caribe y Centroamérica	Guadalajara	903
•	México	7096
	Monterrey	0.3
	Tijuana	0.05
Total Caribe y Centroamérica		7999
Sudamérica	Guadalajara	2196
	México	20179
	Monterrey	71
Total Sudamérica		22445
Estados Unidos	Guadalajara	33001
	México	43685
	Monterrey	10899

Región de origen	Aeropuerto mexicano de destino	Carga total (ton)
	Tijuana	23
	Toluca	13165
Total Estados Unidos		100773
Europa	Guadalajara	7583
	México	74019
	Monterrey	682
Total Europa		82284
Asia (Lejano Oriente)	México	401
Total general		214664

Fuente: Elaboración personal con datos de la DGAC

Al aplicar la técnica de análisis y clasificación de Pareto a los datos internacionales, se encontró un nivel de concentración aún mayor que el observado en el ámbito nacional; de tal manera, que 80.8 % (312,539.1 ton) de la carga fue transportada en 6.5 % (43 arcos) de los arcos; 95.1 % (369,064 ton) de la carga se transportó en 27.3 % (100 arcos) de los arcos; y 4.8 % (19,156 ton) de la carga restante se transportó en 84.7 % (266 arcos) de los arcos. En la figura 5.11 se muestra la gráfica con la distribución acumulada de Pareto.

Figura 5.11
Concentración de la carga en la red internacional

Fuente: Elaboración personal con datos de la DGAC

A continuación se describirá una de las redes que se obtuvo al aplicar la regla de Pareto en el ámbito internacional.

5.1.4 Red básica internacional regular (red de carga internacional regular)

El análisis de la red básica internacional de carga aérea regular nos permite visualizar parte de la integración que tiene actualmente México con diferentes partes del mundo.

Cabe señalar que tanto para esta red básica internacional de carga regular como para el resto de las redes internacionales que se modelaron, y cuyos resultados se mostrarán en el capítulo 6, se tomó en cuenta sólo 95% de la carga total manejada por los aeropuertos en el 2003. Sin embargo, la cantidad de carga de cada terminal internacional que se utilizó para modelar las redes respectivas no representa el 95% de la carga transportada en los arcos internacionales, ya que se tomó en cuenta exclusivamente la carga que procedió o tuvo como origen algún aeropuerto mexicano; esto podría afectar la modelación gravitacional, sin embargo, no se contaba con la información detallada de la carga que manejaron los aeropuertos internacionales en el año 2003.

La red básica internacional cuenta con 42 nodos (aeropuertos) dentro y fuera de México. Estos nodos se interconectan por un total de 49 arcos. A continuación se muestran las tablas que contienen dichos nodos en el cuadro 5.6, así como los arcos en el cuadro 5.7.

Cuadro 5.6

Nodos fuera y dentro del territorio mexicano (aeropuertos) que pertenecen a la red de carga internacional regular 2003, donde se tomó en cuenta 95% de la carga nacional y un porcentaje menor para la carga internacional

	NODO	CARGA QUE SALE DEL NODO	CARGA QUE LLEGA AL NODO	CARGA TOTAL (toneladas)
1	México	69186.722	123095.375	192282.097
2	Guadalajara	29688.991	31492.552	61181.543
3	Memphis	27501.065	29645.319	57146.384
4	Los Ángeles	23092.369	16168.823	39261.192
5	Ámsterdam	22148.827	8244.930	30393.757
6	Toluca	9852.288	13018.074	22870.362
7	Luxemburgo	16098.969	4882.045	20981.014
8	París	13956.167	6481.550	20437.717
9	Monterrey	10959.371	9406.775	20366.146
10	Miami	9719.819	9938.800	19658.619
11	Cincinnati	6346.588	5298.861	11645.449
12	Dayton	5161.133	5132.505	10293.638
13	Sao Paulo	8392.531	1662.182	10054.713
14	Madrid	8410.792	796.632	9207.424
15	Houston	1017.862	6787.504	7805.366

	NODO	CARGA QUE SALE DEL NODO	CARGA QUE LLEGA AL NODO	CARGA TOTAL (toneladas)
16	Louisville	4608.149	3065.370	7673.519
17	Bogotá	3346.327	3904.881	7251.208
18	Santiago de Chile	5108.799	2087.348	7196.147
19	Guatemala	3780.935	3333.857	7114.792
20	Mérida	4338.695	1369.352	5708.047
21	Frankfurt	3765.868	1878.344	5644.212
22	Austin	2452.977	2544.569	4997.546
23	San José, Costa Rica	2430.269	1629.540	4059.809
24	New York	622.708	3294.625	3917.333
25	Chicago	2255.032	1638.464	3893.496
26	San Antonio	3329.416	0.000	3329.416
27	Londres	1472.940	1322.072	2795.012
28	Atlanta	1162.647	957.756	2120.403
29	Dallas	540.213	943.780	1483.993
30	Toronto	570.350	661.975	1232.325
31	Santa Cruz	955.795	0.000	955.795
32	Cancún	0.000	892.462	892.462
33	Lima	876.441	0.000	876.441
34	Tokio	0.000	846.592	846.592
35	San José del Cabo	800.048	0.000	800.048
36	Pto. Vallarta	772.340	0.000	772.340
37	Quito	0.000	712.778	712.778
38	Río de Janeiro	682.886	0.000	682.886
39	Panamá	0.000	622.128	622.128
40	San Francisco	0.000	593.495	593.495
41	Mazatlán	0.000	533.284	533.284
42	La Habana	0.000	521.730	521.730
	Total	305406.329	305406.329	610812.658

Fuente: Elaboración personal con datos de la DGAC

Cuadro 5.7

Arcos que pertenecen a la red de carga internacional regular

ARCO	ORIGEN	DESTINO	FLUJO O – D (ton)	FLUJO O – D (%)	FLUJO D – O (ton)	FLUJO D – O (%)	FLUJO TOTAL (ton)
1	Ámsterdam	México	20603.4	73.2	7541.5	26.8	28144.881
2	Guadalajara	Memphis	15461.6	57.8	11267.3	42.2	26728.921
3	París	México	13956.2	68.3	6481.6	31.7	20437.717

0			FLUJO	FLUJO	FLUJO	FLUJO	FLUJO
ARCO			O – D	0 – D	D – O	D – O	TOTAL
	ORIGEN	DESTINO	(ton)	(%)	(ton)	(%)	(ton)
	Los Ángeles	México	13742.4	58.3	9839.1	41.7	23581.547
5	Memphis	Toluca	13018.1	56.9	9852.3	43.1	22870.362
6	Luxemburgo	México	12937.3	81.8	2871.6	18.2	15808.877
7	Los Ángeles	Guadalajara	8816.7	65.0	4757.3	35.0	13573.973
8	Madrid	México	8410.8	91.3	796.6	8.7	9207.424
9	Sao Paulo	México	8392.5	83.5	1662.2	16.5	10054.713
10	Miami	México	7458.0	57.1	5600.1	42.9	13058.110
11	México	Houston	6787.5	87.0	1017.9	13.0	7805.366
12	Santiago de Chile	México	5108.8	71.0	2087.3	29.0	7196.147
13	Louisville	México	4608.1	100.0	0.0	0.0	4608.149
14	Cincinnati	México	4525.8	58.6	3202.7	41.4	7728.513
15	Mérida	Miami	4338.7	76.0	1369.4	24.0	5708.047
16	Monterrey	Memphis	4331.4	57.4	3215.7	42.6	7547.101
17	Monterrey	Dayton	4083.4	52.2	3738.1	47.8	7821.499
18	Guatemala	México	3780.9	53.1	3333.9	46.9	7114.792
19	Frankfurt	México	3765.9	66.7	1878.3	33.3	5644.212
20	México	Bogotá	3359.4	50.1	3346.3	49.9	6705.691
21	San Antonio	Guadalajara	3329.4	100.0	0.0	0.0	3329.416
22	México	New York	3294.6	84.1	622.7	15.9	3917.333
23	Luxemburgo	Guadalajara	3161.7	61.1	2010.5	38.9	5172.137
24	Guadalajara	Louisville	3065.4	100.0	0.0	0.0	3065.370
25	Monterrey	Austin	2544.6	50.9	2453.0	49.1	4997.546
26	Chicago	México	2255.0	57.9	1638.5	42.1	3893.496
27	Guadalajara	Cincinnati	2096.1	53.5	1820.8	46.5	3916.936
28	San José, Costa Rica	México	1781.7	52.2	1629.5	47.8	3411.241
29	Ámsterdam	Guadalajara	1545.4	68.7	703.5	31.3	2248.876
30	Londres	México	1472.9	52.7	1322.1	47.3	2795.012
31	Atlanta	México	1162.6	54.8	957.8	45.2	2120.403
	Guadalajara	Dayton	1049.1	53.8	902.7	46.2	1951.829
	Santa Cruz	México	955.8	100.0	0.0	0.0	955.795
	México	Dallas	943.8	63.6	540.2	36.4	1483.993
	Miami	Cancún	892.5	100.0	0.0	0.0	892.462
	Lima	México	876.4	100.0	0.0	0.0	876.441
	México	Tokio	846.6	100.0	0.0	0.0	846.592
	San José del Cabo	Los Ángeles	800.0	100.0	0.0	0.0	800.048
	Pto. Vallarta	Los Ángeles	772.3	100.0	0.0	0.0	772.340
	México	Quito	712.8	100.0	0.0	0.0	712.778

ARCO	ORIGEN	DESTINO	FLUJO O – D (ton)	FLUJO O – D (%)	FLUJO D – O (ton)	FLUJO D – O (%)	FLUJO TOTAL (ton)
41	Río de Janeiro	México	682.9	100.0	0.0	0.0	682.886
42	México	Toronto	662.0	53.7	570.4	46.3	1232.325
43	San José, Costa Rica	Guadalajara	648.6	100.0	0.0	0.0	648.568
44	México	Panamá	622.1	100.0	0.0	0.0	622.128
45	México	San Francisco	593.5	100.0	0.0	0.0	593.495
46	Guadalajara	Bogotá	545.5	100.0	0.0	0.0	545.517
47	Los Ángeles	Mazatlán	533.3	100.0	0.0	0.0	533.284
48	México	La Habana	521.7	100.0	0.0	0.0	521.730
49	Dayton	México	520.3	100.0	0.0	0.0	520.310
		Total	206375.7		99030.7		305406.3

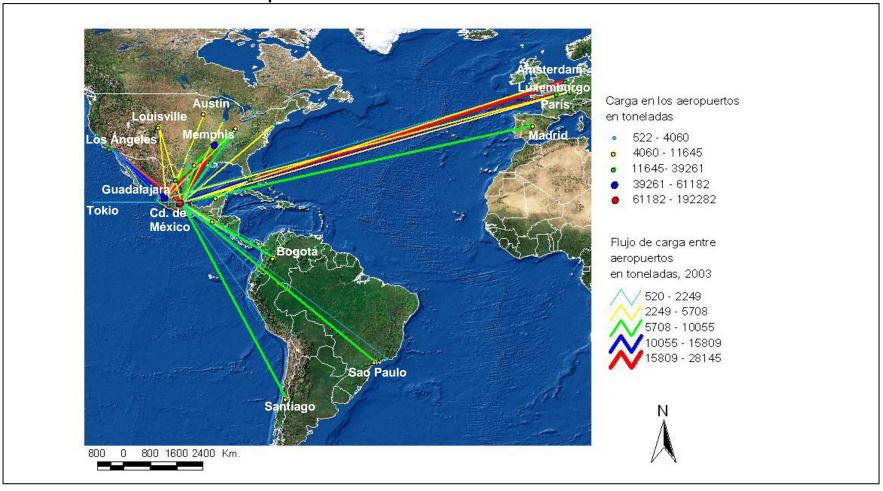
Fuente: Elaboración personal con datos de la DGAC

En la figura 5.12 se muestra la georreferenciación de la red internacional, pero que incluye únicamente la cargar regular; en la misma figura se observa que gran parte del flujo de carga internacional regular se dirige hacia los aeropuertos de EE.UU. y que una menor parte se dirige a Europa, Centro y Sudamérica. Una de las hipótesis que podría explicar este fenómeno es la mencionada en la sección 5.1.3, en donde se dice que una gran parte de la carga sólo se considera como de paso en los aeropuertos de EE.UU. y tienen como destino final a cualquier otro aeropuerto en la Unión Europea, Centroamérica, Caribe, Canadá Sudamérica, o el Lejano Oriente.

En relación con el tamaño de los nodos internacionales no se puede hacer comentario alguno, debido a que no se cuenta con la cantidad de carga total de servicio regular internacional que manejaron aeropuertos situados fuera del territorio mexicano, pero sí se puede hacer un pequeño análisis con respecto a los arcos más sobresalientes que se registraron en el 2003. El arco en donde se concentra más carga internacional regular es el de Ámsterdam-México; en segundo, tercero y cuarto lugar le siguen el arco Guadalajara-Memphis, el de París-México, Los Ángeles-México, y Memphis-Toluca.

Sólo se tuvo acceso a la información relacionada con la carga total que manejaron algunos aeropuertos internacionales en el 2003, y se tiene su posición a nivel mundial en términos de la cantidad de carga total manejada.

El aeropuerto de Memphis (MEM) está clasificado para el 2003 como el que movió más carga a nivel mundial, es el principal *hub* de FedEx y en el 2003 tuvo un flujo total de carga de 3'390, 515 toneladas (Air Cargo World, 2004); pero como ya se mencionó, no se tiene el dato de las toneladas que manejó en el servicio regular para el ámbito internacional. El de Los Ángeles (LAX) ocupó el lugar seis a nivel internacional, con un flujo total de carga de 1'806, 164 toneladas en el 2003,


aunque también se desconoce la cantidad de toneladas que corresponden al servicio regular internacional.

Al de París, de Gaulle (CDG) le correspondió el lugar 14; movió 1'481, 200 de toneladas de carga, y es el *hub* europeo de FedEx; también se encuentra Air France en ese aeropuerto.

El de Ámsterdam (AMS) ocupó el lugar 15 internacional; tuvo una cantidad de flujo de carga que asciende a 1'353, 729 toneladas; y las principales aerolíneas de carga que hacen uso de la terminal son KLM, Royal Dutch Airlines y Martinair.

Figura 5.12

Georreferenciación de la red de carga internacional regular del 2003, representado el flujo como arcos, y los aeropuertos nacionales e internacionales como nodos

5.2 Jerarquización espacial de los aeropuertos nacionales con el método Nystuen-Dacey

Los modelos jerárquicos son modelos de análisis de información que pueden emplearse para entender la estructura espacial de un sistema de ciudades, y también de un sistema de transporte. Estos modelos se basan en el análisis de los flujos entre los nodos de la red, así como en la suma total de los flujos que maneja cada nodo; por tanto, los flujos máximos entre nodos se utilizan para categorizar esos nodos dentro del sistema⁸.

Uno de los métodos que sirven para categorizar los nodos del sistema de transporte es el denominado Nystuen-Dacey; este método se aplicará a la red de transporte aéreo de carga en México.

Para aplicar el método Nystuen-Dacey en cualquiera de las redes de transporte aéreo que se describieron en la sección 4.3 de la presente investigación, se debe contar con la información de los flujos máximos de carga entre los nodos, pero también con la cantidad de carga total que manejan los nodos (aeropuertos) en un periodo de tiempo dado (que para nuestro trabajo es de un año).

Debido a que no se cuenta con la información de la carga total que manejan los aeropuertos internacionales para el 2003, se decidió recurrir al método Nystuen-Dacey únicamente a alguna red del ámbito nacional, ya que de haberlo aplicado al ámbito internacional se habría obtenido una jerarquía espacial severamente sesgada hacia los nodos nacionales (ya que estos habrían obtenido tal vez una mayor jerarquía, al aparentemente manejar más carga que otros nodos internacionales).

La red que se eligió para obtener la jerarquía espacial de los aeropuertos nacionales, es la red de carga nacional regular y de fletamento; a continuación se hará una breve descripción del método y del procedimiento que se siguió para obtener el árbol jerárquico que mostrara la categorización de los nodos de la red.

El método Nystuen-Dacey (1961), adaptado de Taaffe, et al. (1996) y Rico (2005), se basa en el concepto de flujo máximo entre los nodos para asignarle una de las tres siguientes posibles jerarquías a cada nodo de la red:

- 1. **Nodo dominante:** es aquel cuyo flujo máximo se presenta en un enlace que lo conecta con un nodo más pequeño. El tamaño de los nodos se mide por la carga total atendida en un periodo de tiempo, en este caso un año
- 2. **Nodo subdominante:** es aquel cuyo flujo máximo se presenta en un enlace que lo conecta con un nodo más grande, pero que al mismo

69

⁸ Basado en http://www.diap.polimi.it/~grabino/metodiemodelli/Gerarchie/gerarchie1_en.htm

tiempo está enlazado por medio del flujo máximo de un nodo más pequeño

3. **Nodo dominado:** es aquel cuyo flujo máximo se presenta en un enlace que lo conecta con un nodo más grande

El flujo máximo está compuesto por la suma de carga anual que fue transportada en ambos sentidos dentro de un mismo arco.

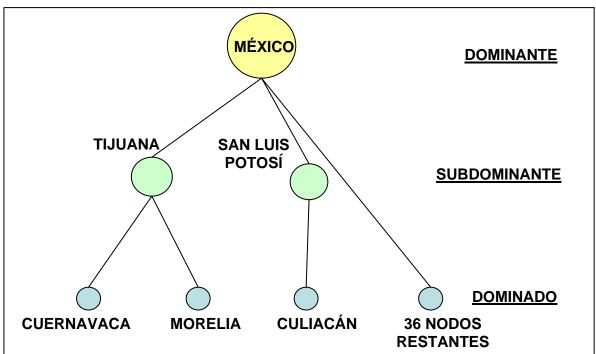
A continuación se presenta el procedimiento que se utilizó para determinar el flujo máximo de cada nodo, y para categorizar al mismo tiempo cada uno de esos nodos (basado en Rico, 2005):

- Se obtuvo la lista de todos los arcos que forman la red de carga nacional regular y de fletamento; esa lista especifica el nodo origen, el nodo destino y la intensidad de flujo entre ellos; este último valor, como ya se mencionó, es la suma de la carga que se registró en ambos sentidos del arco.
- 2. Posteriormente, se obtuvo la suma de toda la carga que sale y entra de cada uno de los nodos, con el fin de determinar la cantidad de carga en toneladas atendida por cada nodo nacional (aeropuerto) en 2003; en función de la carga total atendida se ordenaron esos nodos en forma descendente; es decir, se ordenaron en función de su tamaño en términos del volumen de carga que manejaron.
- 3. Para cada uno de los nodos ordenados en función de su tamaño, se buscó cuál de los arcos que convergen en él tenía el máximo flujo; después de haberlo identificado se buscó el nodo que se encontraba en el otro extremo del arco, ya que dependiendo del tamaño de ese otro nodo era la categorización (no definitiva) que se le asignaría al nodo en análisis.
- 4. Si el nodo que se encontraba en el otro extremo del arco era de menor tamaño (en función de su posición en la ordenación descendente que se hizo previamente de los nodos), entonces el nodo analizado podría ser "dominante" o "subdominante". Pero si el nodo en el otro extremo del arco era de mayor jerarquía, entonces el nodo analizado podría ser "dominado" o "subdominante".
- 5. La categorización definitiva de los nodos "subdominantes" se determinó al final del análisis de todos los nodos, de tal manera que un nodo resultaba ser "subdominante" cuando estaba relacionado con algún nodo "dominado", pero su flujo máximo lo conectaba con un nodo "dominante".

6. Finalmente, se obtuvo una tabla con la categorización de todos los nodos en función de su jerarquía espacial, misma que se muestra en el cuadro 5.8.

Cuadro 5.8

Categorización de los nodos nacionales de acuerdo con su jerarquía espacial, identificada por el método Nystuen-Dacey


		· 	-			
	Nodo en análisis	Carga total (95%) manejada por el aeropuerto, 2003 (ton)	Número de nodos conectados	Nodo colocado al otro extremo del arco con el flujo máximo del nodo en análisis	Flujo máximo (ton)	Categoría asignada al nodo en análisis
1	México	79747.41	39	Guadalajara	14,928.43	Dominante
2	Guadalajara	25017.23	8	México	14,928.43	Dominado
3	Monterrey	18502.35	6	México	7,775.53	Dominado
4	Tijuana	15480.00	13	México	7,391.01	Subdominante
5	San Luis Potosí	11315.01	6	México	5,028.67	Subdominante
6	Mérida	8188.15	1	México	8,188.15	Dominado
7	Hermosillo	5465.13	5	México	1,649.67	Dominado
8	Cancún	4756.10	1	México	4,756.10	Dominado
9	Culiacán	3266.77	3	San Luis Potosí	1,558.88	Dominado
10	Chihuahua	3004.15	3	México	2,081.85	Dominado
11	Villahermosa	2425.43	1	México	2,425.43	Dominado
12	Cd. Juárez	2301.64	3	México	1,449.19	Dominado
13	San José del Cabo	2140.96	3	México	1,364.18	Dominado
14	Oaxaca	2098.02	2	México	1,453.60	Dominado
15	Mexicali	1862.46	2	México	1,480.02	Dominado
16	Del Bajío	1850.59	2	México	1,349.69	Dominado
17	Mazatlán	1528.07	3	México	1,129.74	Dominado
18	Tuxtla Gutiérrez	1441.00	1	México	1,441.00	Dominado
19	La Paz	1404.43	2	México	826.91	Dominado
20	Pto. Vallarta	1336.41	1	México	1,336.41	Dominado
21	Tapachula	1258.46	1	México	1,258.46	Dominado
22	Veracruz	1246.15	1	México	1,246.15	Dominado
23	Acapulco	1221.47	1	México	1,221.47	Dominado
24	Aguascalientes	868.34	2	México	590.81	Dominado
25	Tampico	856.98	1	México	856.98	Dominado
26	Torreón	730.91	1	México	730.90	Dominado
27	Cuernavaca	694.48	1	Tijuana	694.48	Dominado
28	Reynosa	640.22	1	México	640.22	Dominado
29	Zihuatanejo	613.08	1	México	613.08	Dominado
30	Ciudad del Carmen	582.97	1	México	582.97	Dominado
31	Matamoros	562.75	1	México	562.75	Dominado
32	Minatitlán	523.79	1	México	523.79	Dominado
33	Los Mochis	501.85	1	México	501.85	Dominado
34	Ciudad Obregón	499.18	1	México	499.18	Dominado
35	Bahías de Huatulco	482.58	1	México	482.58	Dominado
36	Nuevo Laredo	449.87	1	México	449.87	Dominado
37	Chetumal	419.84	1	México	419.84	Dominado
38	Morelia	315.04	1	Tijuana	315.04	Dominado
39	Saltillo	299.15	1	México	299.15	Dominado
40	Manzanillo	281.85	1	México	281.85	Dominado

	Nodo en análisis	Carga total (95%) manejada por el aeropuerto, 2003 (ton)	Número de nodos conectados	Nodo colocado al otro extremo del arco con el flujo máximo del nodo en análisis	Flujo máximo (ton)	Categoría asignada al nodo en análisis
41	Durango	273.66	1	México	273.66	Dominado
42	Ciudad Victoria	268.66	1	México	268.66	Dominado

Fuente: Basado en Rico (2005)

A partir del cuadro 5.8 se obtuvo el árbol jerárquico que se muestra a continuación en la figura 5.13.

Figura 5.13 Árbol jerárquico de la red de carga nacional regular y de fletamento, 2003

Fuente: Elaboración personal

Como se observa en la figura 5.13, el aeropuerto de Monterrey y el de Guadalajara no aparecen como nodos subdominantes. En la sección 5.1.2 se alude a la importancia absoluta de ambas terminales en función de los volúmenes de carga que atienden anualmente; es bastante alta, pero se puede observar que al considerar las relaciones que guardan estos con otros aeropuertos, se concluye que su jerarquía espacial es menor; es decir, tienen menor importancia como nodos en el espacio geográfico.

El nodo del aeropuerto de México sigue apareciendo en la jerarquía más alta al ser el dominante en el sistema; también hubo coincidencias con respecto al nodo del aeropuerto de Tijuana y de San Luis Potosí, ya que en el análisis de jerarquía

espacial esos dos aeropuertos resultaron ser nodos subdominantes y en la sección 5.1.2 ocuparon el cuarto y quinto lugares en la jerarquía aeroportuaria en términos de su flujo doméstico anual de carga.

A pesar de que en la jerarquía espacial aparecen dos nodos subdominantes, sigue siendo muy pronunciado el dominio del aeropuerto de México; pero conforme se mantenga el crecimiento del transporte aéreo de carga doméstica será menester mejorar la organización, la integración y la articulación de la red de aeropuertos; de tal forma que existan otros aeropuertos espacialmente dominantes y subdominantes que por su posición geográfica sean clave para algunas cadenas logísticas del sector industrial, tal y como ha pasado con los de Tijuana y San Luis Potosí.

5.3 Jerarquización de los aeropuertos nacionales utilizando la regla rango-tamaño

En el apartado anterior se obtuvo la jerarquía de las terminales nacionales tomando en cuenta los flujos máximos de carga de los aeropuertos y el tamaño de los mismos; en esta sección se obtendrá la jerarquía de cada uno en función de su tamaño y del rango que ocupa en relación con los demás; para ello se aplicará la regla rango-tamaño, tomando en cuenta los mismos datos (carga anual manejada por los aeropuertos) que se utilizaron para aplicar el método Nystuen-Dacey.

La regla rango-tamaño se ha utilizado para jerarquizar ciudades en términos poblacionales (Garza y Sobrino, 1989), y su fórmula es la siguiente:

$$P_i = \frac{P_1}{R_i^{\beta}} \tag{5.1}$$

Donde:

P₁= tamaño (población) de la ciudad mayor

 R_i = rango de la ciudad *i* con población P_i

β = coeficiente que vincula rango con tamaño (con frecuencia dicho coeficiente toma valores a la unidad, cumpliéndose la Ley de Zipf⁹)

Para obtener la jerarquía de los aeropuertos con esta regla, se tomó en cuenta 95% de la carga total anual en toneladas (año 2003) que manejaron los aeropuertos en lugar de la población, dando como resultado la siguiente fórmula:

⁹ La Ley de Zipf establece que la segunda ciudad de un país suele tener un efectivo de población igual a la mitad de la primera, la tercera igual a la tercera parte de la primera; y en general una ciudad de rango R_i en la distribución tendrá una población igual a la de la primera ciudad, dividida por este rango R_i. La ley de Zipf lleva ese nombre por haber sido George Kingsley Zipf el primero en mostrar la existencia de esta regularidad en 1941, a partir de los datos de muchos países (Esteve y Devolver, 2004)

$$C_i = \frac{C_1}{R_i^{\beta}} \tag{5.2}$$

Donde:

 C_1 = tamaño (carga anual) del aeropuerto mayor

 R_i = rango del aeropuerto *i* con cantidad de carga C_i

β= coeficiente que vincula rango con tamaño

La estimación del parámetro β se obtiene a través de estimar los coeficientes de una ecuación de regresión lineal, de tal manera que aplicando logaritmos a la ecuación 5.2 se obtiene la siguiente fórmula:

$$Log (C_i) = \alpha - \beta log (R_i)$$
 (5.3)

Donde: $\alpha = \log (C_1)$

Tomando en cuenta la carga total C_i de cada aeropuerto del cuadro 5.9, así como su rango, se obtuvo la estimación de los parámetros de la ecuación de regresión lineal, en donde α = 5.0184 y β =1.5201, con R^2 = 0.9838; pero sólo se tomará en cuenta la estimación del parámetro β , porque el parámetro α no es de utilidad ya que al aplicársele antilogaritmo se obtendría la estimación de la carga anual del aeropuerto más grande, pero ese dato es conocido.

Sustituyendo valores C_1 y β se obtiene:

$$C_i = \frac{79747.41}{R_i^{1.5201}} \tag{5.4}$$

El propósito es adjudicarle un rango a cada aeropuerto; por tal razón se despeja R_i de la ecuación 5.4, tal y como se muestra a continuación.

$$R_{i} = \frac{(79747.41)^{\frac{1}{1.5201}}}{C_{i}^{\frac{1}{1.5201}}}$$
 (5.5)

$$R_i = \frac{1676.992}{C_i^{0.6578}} \tag{5.6}$$

Con base en la ecuación 5.6 se calculó el rango que le correspondía a cada aeropuerto, mismo que se puede comparar con el valor *i* que resultó de la simple ordenación de mayor a menor tamaño (en función de la cantidad de carga anual) de los aeropuertos, tal como se muestra a continuación en el cuadro 5.9.

Cuadro 5.9

Jerarquización de los aeropuertos nacionales a través de la regla rangotamaño

Nodo (aeropuerto) en análisis	i (ordenación de mayor a menor)	C _i , Carga total (95%) manejada por el aeropuerto 2003 (ton)	R _i (rango calculado con la regla rango- tamaño)	R _i (ajustado por redondeo)
México	1	79747.41	1.0000	1
Guadalajara	2	25017.23	2.1439	2
Monterrey	3	18502.35	2.6145	3
Tijuana	4	15480.00	2.9400	3
San Luis Potosí	5	11315.01	3.6132	4
Mérida	6	8188.15	4.4698	4
Hermosillo	7	5465.13	5.8317	6
Cancún	8	4756.10	6.3900	6
Culiacán	9	3266.77	8.1811	8
Chihuahua	10	3004.15	8.6448	9
Villahermosa	11	2425.43	9.9516	10
Cd. Juárez	12	2301.64	10.3005	10
San José del Cabo	13	2140.96	10.8027	11
Oaxaca	14	2098.02	10.9477	11
Mexicali	15	1862.46	11.8399	12
Del Bajío	16	1850.59	11.8898	12
Mazatlán	17	1528.07	13.4860	13
Tuxtla Gutiérrez	18	1441.00	14.0167	14
La Paz	19	1404.43	14.2557	14
Pto. Vallarta	20	1336.41	14.7290	15
Tapachula	21	1258.46	15.3229	15
Veracruz	22	1246.15	15.4223	15
Acapulco	23	1221.47	15.6266	16
Aguascalientes	24	868.34	19.5592	20
Tampico	25	856.98	19.7294	20
Torreón	26	730.91	21.9066	22
Cuernavaca	27	694.48	22.6559	23
Reynosa	28	640.22	23.9014	24
Zihuatanejo	29	613.08	24.5923	25
Ciudad del Carmen	30	582.97	25.4206	25
Matamoros	31	562.75	26.0178	26
Minatitlán	32	523.79	27.2752	27
Los Mochis	33	501.85	28.0539	28
Ciudad Obregón	34	499.18	28.1525	28
Bahías de Huatulco	35	482.58	28.7859	29
Nuevo Laredo	36	449.87	30.1462	30
Chetumal	37	419.84	31.5478	32

Nodo (aeropuerto) en análisis	i (ordenación de mayor a menor)	C _i , Carga total (95%) manejada por el aeropuerto 2003 (ton)	R _i (rango calculado con la regla rango- tamaño)	R _i (ajustado por redondeo)
Morelia	38	315.04	38.1078	38
Saltillo	39	299.15	39.4275	40
Manzanillo	40	281.85	41.0032	41
Durango	41	273.66	41.8064	42
Ciudad Victoria	42	268.66	42.3166	42

También se puede observar en el cuadro 5.9 que los aeropuertos de Guadalajara y Monterrey aparecen en el rango 2 y 3, lo que muestra una jerarquía alta dentro de la red en términos de su tamaño, al grado de que el de Monterrey tiene el mismo rango que el de Tijuana; cabe decir que con el método Nystuen-Dacey los resultados divergen un poco, ya que los flujos máximos de los aeropuertos de Cuernavaca (694.48 ton); Morelia (315.04 ton); y Culiacán (1, 558.88 ton) hicieron que los de Tijuana y San Luis Potosí lograran la categoría de nodos subdominantes, y con ello aumentar su nivel jerárquico; pero debe mencionarse que los flujos máximos de carga de Cuernavaca, Morelia y Culiacán no son de los flujos de carga mayores de la red; por tanto, podría decirse que son aeropuertos subdominantes pero débilmente; de ahí que se concluye con base en los resultados de la regla rango-tamaño, que los de Tijuana y San Luis Potosí no tienen una jerarquía mucho mayor que los de Guadalajara y Monterrey.

Finalmente, se observa en los resultados de la regla rango-tamaño que no existen aeropuertos para los rangos R_i = 5, 7, 17, 18, 19, 21, 31, 33, 34, 35, 36, 37 y 39; además, que el parámetro β es mayor a uno, lo que significa que la distribución jerárquica de los aeropuertos tiende a la primacía de algunos sobre el resto (adaptado de Garza y Sobrino, 1989). Para aplicar la regla rango-tamaño se tomó en cuenta sólo la carga nacional con el fin de complementar los resultados con lo obtenidos al aplicar el método Nystuen-Dacey (ya que este método utiliza como dato adicional el flujo máximo de los aeropuertos), aun cuando se hace la aclaración que se podría aplicar la regla rango-tamaño, tomando en cuenta 100% de la carga nacional e internacional que maneja cada uno de los aeropuertos mexicanos.

6 Modelación gravitacional de la distribución de carga aérea en México

La finalidad de calibrar un modelo gravitacional con los datos de los flujos de carga de la red de transporte aéreo en México del 2003, es determinar su pertinencia como herramienta técnica de análisis y predicción de flujos de carga para este modo de transporte. En otras palabras, si la distribución de los flujos de carga se comporta de manera análoga al principio gravitacional, se estarán aportando elementos para justificar su empleo en estudios sobre la red de transporte de carga aérea en México, y su posterior utilización para pronósticos; pero, en caso contrario, se estarán aportando elementos para cuestionar su uso.

A continuación se describe el procedimiento de calibración de nueve modelos gravitacionales que fueron obtenidos para cada una de las nueve redes básicas (descritas en la sección 4.3), y posteriormente, se determina si alguno de los modelos gravitacionales calibrados resultó significativo.

6.1 Procedimiento de calibración de los modelos gravitacionales

El modelo gravitacional no acotado que se utilizó para modelar la distribución de los flujos de cada una de las nueve redes básicas, es el siguiente:

$$V_{ij} = \alpha \frac{\left(VG_i \cdot VA_j\right)^{\beta}}{D_{ij}^{\delta}} \tag{6.1}$$

$$V_{ij} = \alpha \left[(VG_i)(VA_i) \right]^{\beta} (D_{ij})^{-\delta}$$
(6.2)

Al aplicar logaritmos naturales a ambas partes de la ecuación del modelo gravitacional (6.2), se obtiene la siguiente ecuación lineal:

$$Ln(V_{ij}) = \ln \alpha + \beta \ln [(VG_i)(VA_j)] - \delta \ln (D_{ij})$$
(6.3)

Los parámetros de calibración del modelo gravitacional (6.2) α , β y δ se obtendrán por medio de la estimación de la ecuación de regresión lineal múltiple (6.3); en ella se utiliza el logaritmo natural del flujo de carga en los arcos $[ln\ (V_{ij})]$ como variable dependiente; el logaritmo natural del producto de los volúmenes de carga generados y atraídos por el nodo origen i y el nodo destino j, $\ln\ [(VG_i)(VA_j)]$, de cada arco representan a la primera variable independiente, y el logaritmo natural de la distancia entre el nodo i y el nodo j $[\ln\ D_{ij}]$ es la segunda variable independiente.

Para calcular la ecuación de regresión lineal múltiple en cada una de las nueve redes se procedió a obtener nueve tablas, que contendrían la información de las dos variables independientes y de la variable dependiente. Estas tablas tienen los siguientes campos:

NODO ORIGEN	NODO DESTINO	FLUJO O-D V _{ij} (ton)	CARGA GENERADA NODO ORIGEN VG;	CARGA ATRAÍDA NODO DESTINO <i>VA</i> ;	PRODUCTO (VG _i)(VA _j) (ton)	LONGITUD DEL ARCO (km) D _{ij}
----------------	-----------------	---------------------------------------	--	--	---	---

En donde la distancia (D_{ij}), en kilómetros, entre el nodo origen i y el nodo destino j, se calculó por medio del software ArcView para la parte nacional; y el software Encarta de Microsoft y la información de itinerarios de Aeroméxico, para la parte internacional.

La variable V_{ij} es la cantidad de carga, en toneladas, que se transporta entre el origen i-ésimo (nodo origen) y el destino j-ésimo (nodo destino); y se obtuvo del procesamiento de las bases de datos de la DGAC 2003, tal y como se explicó en el capítulo 4.

Posteriormente, de esa tabla se calcularon los logaritmos naturales de algunos de los campos para poder estimar los coeficientes de la ecuación de regresión lineal múltiple, y se obtuvieron los siguientes tres campos para cada una de las nueve tablas:

$Ln(V_{ij})$ $Ln[(VG_i)(VA_j)]$	Ln (D _{ij})
---------------------------------	-----------------------

En donde VGi es la cantidad de carga generado en el nodo i-ésimo (en toneladas), y VAi es la cantidad de carga atraído en el nodo j-ésimo (en toneladas).

Una de las ventajas de obtener los parámetros del modelo gravitacional a través de estimar los coeficientes de la regresión lineal múltiple, es que mediante pruebas de hipótesis se pueden determinar si son significativos, además de que el análisis de regresión permite medir qué tanto se ajusta el flujo actual o real con el flujo estimado por el modelo gravitacional, lo cual es fundamental para evaluar de la adecuación del modelo gravitacional al comportamiento observado de la distribución de carga en la red.

6.2 Obtención de los parámetros de los modelos gravitacionales para el ámbito nacional y determinación de la significancia de los mismos

A continuación se muestran los modelos gravitacionales calibrados que se obtuvieron para el ámbito nacional.

6.2.1 Modelo gravitacional de la red de carga nacional regular

Al aplicar el método de mínimos cuadrados a la tabla (ver datos fuente en el anexo 1) que contiene la información observada (en el año 2003) de las dos variables independientes, y de la variable dependiente (de la red de carga nacional regular) se obtuvo la estimación de la siguiente ecuación de regresión lineal múltiple:

$$Ln(V_{ij}) = -5.459 + 0.660 \ln[(VG_i)(VA_i)] + 0.083 \ln(D_{ij})$$
 (6.4)

Posteriormente se realizó el análisis de significancia de la regresión, en donde se llevó a cabo el análisis de varianza (cuadro 6.1) para hacer posteriormente la prueba de hipótesis.

Cuadro 6.1

Análisis de varianza de la ecuación de regresión obtenida para la red de carga nacional regular

	ANÁLISIS DE VARIANZA						
Fuente de Grados de Suma de los Valor crítico							
variación	libertad	cuadrados	cuadrados	Fc	F		
Regresión	2	87.361428	43.680714	169.504651	6.79411E-34		
Residuos	107	27.573499	0.257696				
Total	109	114.934927					

Fuente: Elaboración personal

Con las siguientes hipótesis:

$$H_0$$
: $\beta_1=0$, $\beta_2=0$

$$H_1$$
: $\beta_1 \neq 0$, $\beta_2 \neq 0$

En donde β_1 es el coeficiente de la variable independiente X_1 , y β_2 es el coeficiente de la variable independiente X_2 .

Se rechaza
$$H_0$$
 si Fc > 6.79411E-34

Se tuvo suficiente evidencia para rechazar la hipótesis nula (H_0) y aceptar la alternativa (H_1) , por lo que se puede afirmar con un 95% de confianza que de las variables independientes $X_1 = In[(VG_i)(VA_j)]$, $X_2 = In(D_{ij})$, al menos una es significativa; es decir, sirve para explicar el comportamiento de la variable dependiente $Ln(V_{ij})$.

El coeficiente de correlación múltiple (cuadro 6.2) indica que existe una relación lineal de 87.18% entre las variables independientes $X_1 = \ln[(VG_i)(VA_j)]; X_2 = \ln(D_{ij}); y$ la variable dependiente $Y = \ln(V_{ij})$. El coeficiente ajustado de determinación indica que las variables $X_1 = \ln[(VG_i)(VA_j)]; X_2 = \ln(D_{ij})$ explican 75.56% del comportamiento de la variable dependiente $Y = \ln(V_{ij});$ es decir, del flujo de carga entre dos arcos.

Cuadro 6.2

Resumen de los indicadores estadísticos de la ecuación de regresión lineal múltiple de la red de carga nacional regular

Indicadores estadísticos de la regresión lineal múltiple					
Coeficiente de correlación múltiple	0.871834				
Coeficiente de determinación R ²	0.760095				
R ² ajustado	0.755610				
Error típico	0.507638				
Observaciones	110				

Fuente: Elaboración personal

En el cuadro 6.3 se muestran los estadísticos utilizados para las pruebas de hipótesis de cada uno de los coeficientes de la ecuación de regresión; a continuación se presentan los resultados de las pruebas:

El coeficiente de $X_1=ln[(VG_i)(VA_j)]$ fue significativo con 95% de confianza, pero el coeficiente de $X_2=ln(D_{ii})$ no fue significativo con 95% de confianza.

Cuadro 6.3
Estadísticos de la prueba de hipótesis para los coeficientes de la ecuación de regresión lineal múltiple de la red de carga nacional regular

	Coeficientes	Error típico	Estadístico t	Probabilidad
	= 4 = 0000	0.000004	0.04==00	5 5 4000 5 40
Intercepción	-5.459296	0.800984	-6.815733	5.74288E-10
Variable X ₁				
"In (VG*VA)"	0.659499	0.035909	18.365677	7.34951E-35
Variable X 2				
"ln (D)"	0.083188	0.080463	1.033867	0.303529

Fuente: Elaboración personal

A partir de la ecuación de regresión lineal múltiple estimada (6.4) se obtiene la estimación de los parámetros del modelo gravitacional, resultando el siguiente modelo:

$$V_{ij} = 0.004257 (VG_i VA_j)^{0.659499} D_{ij}^{0.083188}$$
(6.5)

$$V_{ij} = 0.004257 \frac{\left(VG_i \cdot VA_j\right)^{0.659499}}{D_{ij}^{-0.083188}}$$
(6.6)

No obstante de haberse encontrado que la primera variable independiente explica satisfactoriamente parte del comportamiento de la variable dependiente, al haberse obtenido que el parámetro de la distancia no es significativo se concluye que la distribución de la carga aérea en la red nacional regular (del año 2003) no tiene una fuerte analogía gravitacional, por lo que no se recomienda recurrir al modelo gravitacional no acotado (6.6) para explicar la distribución de la carga doméstica regular en México.

6.2.2 Modelo gravitacional de la red de carga nacional de servicio de fletamento

Para obtener la estimación de la ecuación de regresión lineal múltiple (6.7) se aplicaron logaritmos naturales a las variables de la tabla que se encuentra en el anexo 2 y después se aplicó el método de mínimos cuadrados.

$$Ln(V_{ii}) = 3.096 + 0.457 \ln[(VG_i)(VA_i)] - 0.561 \ln(D_{ii})$$
(6.7)

El análisis de varianza de la regresión (6.7) se muestra en el cuadro 6.4; de esa información se procedió a realizar la prueba de hipótesis en donde se tuvo suficiente evidencia para rechazar la hipótesis nula (H_0 : β_1 =0, β_2 =0) y aceptar la alternativa (H_1 : β_1 \neq 0, β_2 \neq 0), por lo que se puede afirmar con 95% de confianza que de las variables independientes X_1 = ln[(VG_i)(VA_j)], X_2 = ln(D_{ij}), al menos una es significativa; es decir, sirve para explicar el comportamiento de la variable dependiente Ln(V_{ii}) dentro de la red de carga nacional de servicio de fletamento.

Cuadro 6.4

Análisis de varianza de la ecuación de regresión obtenida para la red de carga nacional de servicio de fletamento

ANÁLISIS DE VARIANZA						
Fuente de variación	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	E	Valor crítico de	
Regresión	2	16.193901	8.096950	18.127854	3.94073E-05	
Residuos	19	8.486501	0.446658			
Total	21	24.680402				

Fuente: Elaboración personal

El coeficiente de correlación múltiple (cuadro 6.5) indica que existe una relación lineal de 81.002% entre las variables independientes $X_1 = \ln[(VG_i)(VA_j)]; X_2 = \ln(D_{ij})$ y la variable dependiente $Y = \ln(V_{ij})$. El coeficiente ajustado de determinación señala que las variables $X_1 = \ln[(VG_i)(VA_i)]; X_2 = \ln(D_{ij})$ explican 61.99% del

comportamiento de la variable dependiente $Y = In(V_{ij})$, o sea, del flujo de carga entre dos arcos.

Cuadro 6.5

Resumen de los indicadores estadísticos de la ecuación de regresión lineal múltiple, de la red de carga nacional de servicio de fletamento

Indicadores estadísticos de la regresión lineal múltiple					
Coeficiente de correlación múltiple	0.810027				
Coeficiente de determinación R ²	0.656144				
R ² ajustado	0.619949				
Error típico	0.668324				
Observaciones	22				

Fuente: Elaboración personal

En el cuadro 6.6 se presentan algunos estadísticos para la realización de las pruebas de hipótesis que se efectuaron para cada uno de los coeficientes estimados en la ecuación de regresión. En dichas pruebas de hipótesis, se obtuvo que los dos coeficientes $X_1=\ln[(VG_i)(VA_j)]$ y $X_2=\ln(D_{ij})$ fueron significativos con 95% de nivel de confianza; por tanto, su aplicación es aceptable; sin embargo, conviene tener presente que el valor del estadístico t para variable X_2 se encuentra muy cerca de la zona de no rechazo de la hipótesis nula (que determina que el coeficiente no es significativo), lo cual sería consistente con los resultados obtenidos en el modelo anterior.

Cuadro 6.6

Estadísticos de la prueba de hipótesis para los coeficientes de la ecuación de regresión lineal múltiple de la red de carga nacional de servicio de fletamento

	Coeficientes	Error típico	Estadístico t	Probabilidad
Intercepción	3.096091	2.328209	1.329817	0.199324
Variable X ₁				
"In (VG*VA)"	0.456871	0.086966	5.253420	4.52811E-05
Variable X 2				
"ln (D)"	-0.560475	0.266797	-2.100753	0.049241

Fuente: Elaboración personal

A partir de la ecuación de regresión lineal múltiple estimada (6.7), se obtuvo la estimación los parámetros (α , β y δ) del modelo gravitacional (6.8) y (6.9).

$$V_{ij} = 22.111347 (VG_i VA_j)^{0.456871} D_{ij}^{-0.560475}$$
(6.8)

$$V_{ij} = 22.111347 \frac{\left(VG_i \cdot VA_j\right)^{0.456871}}{D_{ij}^{0.560475}}$$
(6.9)

Con base en los resultados se concluye que la distribución de la carga aérea en la red nacional de servicio de fletamento (del año 2003), presenta una analogía gravitacional "aceptable" (en términos estadísticos); sin embargo, debido a que el comportamiento estadístico de la variable "distancia" se encuentra cerca de la zona de no rechazo de la hipótesis nula, es recomendable realizar pruebas adicionales para utilizar con mayor seguridad este modelo gravitacional en el análisis y pronóstico de los flujos de carga en servicio doméstico de fletamento.

6.2.3 Modelo gravitacional de la red de carga nacional regular y de fletamento

Para obtener le estimación de los coeficientes de la ecuación de regresión lineal múltiple (6.10) se aplicó un logaritmo natural a la tabla del anexo 3, y después se aplicó el método de mínimos cuadrados.

$$Ln(V_{ij}) = -4.388 + 0.674 \ln[(VG_i)(VA_i)] - 0.136 \ln(D_{ii})$$
 (6.10)

El análisis de varianza de la ecuación de regresión (6.10) se muestra a continuación en el cuadro 6.7; al realizar la prueba de hipótesis para determinar si algún coeficiente de la ecuación era significativo, se tuvo suficiente evidencia para rechazar la hipótesis nula (H_0 : β_1 =0, β_2 =0) y aceptar la alternativa (H_1 : β_1 ≠0, β_2 ≠0); por lo que se puede afirmar con 95% de confianza que de las variables independientes X_1 = ln[(V_i)(V_i)], V_i = ln(V_i), al menos una es significativa; es decir, sirve para explicar el comportamiento de la variable dependiente Ln(V_i) que es el logaritmo del flujo de carga entre el nodo i y el destino j dentro de la red de carga nacional regular y de fletamento.

Cuadro 6.7

Análisis de varianza de la ecuación de regresión obtenida para la red de carga nacional regular y de fletamento

	ANÁLISIS DE VARIANZA						
Fuente de variación	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	E	Valor crítico de F		
Regresión	2	136.759266	68.379633	164.760625	5.19712E-36		
Residuos	127	52.708063	0.415024				
Total	129	189.467328					

Fuente: Elaboración personal

En el cuadro 6.8 se muestran algunas estadísticas de la ecuación estimada de regresión, en donde el coeficiente ajustado de determinación indica que las variables $X_1 = \ln[(VG_i)(VA_j)]$, $X_2 = \ln(D_{ij})$ explican 64.42% del comportamiento de la variable dependiente $Y = \ln(V_{ij})$; es decir, del flujo de carga entre dos arcos.

Cuadro 6.8

Resumen de los indicadores estadísticos de la ecuación de regresión lineal múltiple de la red de carga nacional regular y de fletamento

Indicadores estadísticos de la regresión lineal múltiple					
Coeficiente de correlación múltiple	0.849594				
Coeficiente de determinación R ²	0.721809				
R ² ajustado	0.717428				
Error típico	0.644224				
Observaciones	130				

En el cuadro 6.9 se presentan algunos estadísticos para las pruebas hipótesis que se efectuaron en cada uno de los coeficientes estimados en la ecuación de regresión (6.10). En dichas pruebas de hipótesis se obtuvo que el coeficiente de $X_1=\ln[(VG_i)(VA_j)]$ fue significativo con 95% de confianza, pero el coeficiente de $X_2=\ln(D_{ij})$ no fue significativo con 95% de confianza.

Cuadro 6.9

Estadísticos de la prueba de hipótesis para los coeficientes de la ecuación de regresión lineal múltiple de la red de carga nacional regular y de fletamento

	Coeficientes	Error típico	Estadístico t	Probabilidad
Intercepción	-4.388217	0.866979	-5.061506	1.42488E-06
Variable X ₁				
"In (VG*VA)"	0.673619	0.037147	18.133799	4.74325E-37
Variable X ₂				
"ln (D)"	-0.135974	0.092885	-1.463892	0.145694

Fuente: Elaboración personal

A partir de la ecuación de regresión lineal múltiple estimada (6.10) se obtuvo la estimación los parámetros (α , β y δ) del modelo gravitacional no acotado (6.11) y (6.12).

$$V_{ij} = 0.012423 (VG_i VA_j)^{0.673619} D_{ij}^{-0.135974}$$
(6.11)

$$V_{ij} = 0.012423 \frac{\left(VG_i \cdot VA_j\right)^{0.673619}}{D_{ij}^{0.135974}}$$
(6.12)

Se concluye que la distribución de la carga aérea de la red de carga nacional regular y de fletamento (del año 2003) no presenta una fuerte analogía gravitacional, por lo que no es recomendable utilizar el modelo gravitacional no acotado (6.12).

6.3 Obtención de los parámetros de los modelos gravitacionales para el ámbito internacional, y determinación de la significancia de los mismos

En las siguientes secciones se muestran los modelos gravitacionales calibrados que se obtuvieron para el ámbito internacional; es decir, en donde el nodo origen o nodo destino es algún aeropuerto fuera del territorio mexicano.

6.3.1 Modelo gravitacional de la red de carga internacional regular

Para obtener le estimación de la ecuación de regresión lineal múltiple (6.13) se aplicó un logaritmo natural a la tabla del anexo 4, y más tarde el método de mínimos cuadrados.

$$Ln(V_{ii}) = -1.838 + 0.643 \ln[(VG_i)(VA_i)] - 0.328 \ln(D_{ii})$$
 (6.13)

El análisis de varianza de la ecuación de regresión (6.13) se muestra en el cuadro 6.10; al realizar la prueba de hipótesis para determinar si algún coeficiente de la ecuación era significativo se tuvo suficiente evidencia para rechazar la hipótesis nula (H_0 : β_1 =0, β_2 =0), y aceptar la alternativa (H_1 : β_1 ≠ 0, β_2 ≠ 0); por lo que se puede afirmar con 95% de confianza que de las variables independientes X_1 = ln[(VG_i)(VA_j)], X_2 = ln(D_{ij}), al menos una es significativa; es decir, que cuando menos una variable independiente sirve para explicar parte del comportamiento de la variable dependiente Ln(V_{ij}), que es el logaritmo del flujo de carga entre el nodo i y el destino j dentro de la red de carga internacional regular.

Cuadro 6.10

Análisis de varianza de la ecuación de regresión obtenida para la red de carga internacional regular

ANÁLISIS DE VARIANZA						
Fuente de variación	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F	
Regresión	2	49.642077	24.821039	59.553391	2.33845E-16	
Residuos	77	32.092547	0.416786			
Total	79	81.734624				

Fuente: Elaboración personal

El coeficiente ajustado de determinación (cuadro 6.11) indica que las variables X_1 = $ln[(VG_i)(VA_j)]$, X_2 = $ln(D_{ij})$ explican 59.71% del comportamiento de la variable dependiente Y= $ln(V_{ij})$, es decir, del flujo de carga entre dos arcos.

Cuadro 6.11

Resumen de los indicadores estadísticos de la ecuación de regresión lineal múltiple de la red de carga internacional regular

Indicadores estadísticos de la regresión lineal múltiple				
Coeficiente de correlación múltiple	0.779331			
Coeficiente de determinación R ²	0.607357			
R ² ajustado	0.597158			
Error típico	0.645590			
Observaciones	80			

En el cuadro 6.12 se presentan algunos estadísticos para la realización de las pruebas de hipótesis, que se efectuaron en cada uno de los coeficientes estimados en la ecuación de regresión (6.13). En dichas pruebas de hipótesis se obtuvo que el coeficiente de $X_1=\ln[(VG_i)(VA_j)]$ fue significativo (95% de nivel de confianza), y que el coeficiente de $X_2=\ln(D_{ij})$ también resultó significativo (95% de nivel de confianza).

Cuadro 6.12

Estadísticos de la prueba de hipótesis para los coeficientes de la ecuación de regresión lineal múltiple de la red de carga internacional regular

	Coeficientes	Error típico	Estadístico t	Probabilidad
Intercepción	-1.838399	1.119657	-1.641930	0.104683
	-1.030399	1.119037	-1.041930	0.104003
Variable X ₁	0.040505	0.050077	40.070004	0.400075.47
"In (VG*VA)"	0.642585	0.059077	10.876981	3.16037E-17
Variable X ₂				
"In (D)"	-0.327872	0.102122	-3.210578	0.001933

Fuente: Elaboración personal

A partir de la ecuación de regresión lineal múltiple estimada (6.13) se obtuvo la estimación los parámetros (α , β y δ) del modelo gravitacional (6.14) y (6.15).

$$V_{ii} = 0.159072 \ (VG_i \ VA_i)^{0.642585} \ D_{ii}^{-0.327872}$$
 (6.14)

$$V_{ij} = 0.159072 \frac{\left(VG_i \cdot VA_j\right)^{0.642585}}{D_{ij}^{0.327872}}$$
(6.15)

Al haber resultado significativos los parámetros β y δ que corresponden a los parámetros del producto de la carga generada por el nodo i y la carga atraída por el nodo j $(VG_i\ VA_j)$, así como de la distancia D_{ij} podemos detenernos un poco para dar su interpretación. En la ecuación 6.14 el signo negativo del exponente de la distancia D_{ij} indica que a mayor distancia, menor será el flujo entre los nodos i y j. Recordemos que en el capítulo 5 se mostró que la mayor parte de los flujos de

carga internacional van hacia los aeropuertos *hub* de Estados Unidos de Norteamérica, por lo que parte de esa carga podría tener como destino nodos (aeropuertos) más alejados, y que se está tomando en cuenta una distancia menor a la real (no conocida) para esos flujos.

Se concluye que la distribución de la carga aérea de la red de carga internacional regular (del año 2003) presenta una comportamiento análogo al gravitacional, por lo que se recomienda utilizar el modelo gravitacional no acotado (6.15); no obstante debe tenerse presente que el modelo, sólo logra explicar 59.71% del comportamiento de la variable dependiente $Y = In(V_{ij})$, es decir, del flujo de carga entre dos nodos.

6.3.2 Modelo gravitacional de la red de carga internacional de servicio de fletamento

La información fuente que se utilizó para obtener los logaritmos naturales de las variables y la estimación de la ecuación de regresión lineal múltiple (6.16), se puede ver en la tabla del anexo 5.

$$Ln(V_{ii}) = 0.444 + 0.445 \ln[(VG_i)(VA_i)] - 0.154 \ln(D_{ii})$$
 (6.16)

El análisis de varianza de la ecuación de regresión (6.16) se muestra a continuación en el cuadro 6.13.

Cuadro 6.13

Análisis de varianza de la ecuación de regresión obtenida para la red de carga internacional de servicio de fletamento

ANÁLISIS DE VARIANZA						
	Promedio de					
Fuente de	Grados de	Suma de	los		Valor crítico	
variación	libertad	cuadrados	cuadrados	F	de F	
Regresión	2	65.783738	32.891869	43.309099	1.96695E-12	
Residuos	61	46.327539	0.759468			
Total	63	112.111277				

Fuente: Elaboración personal

Al aplicar la prueba de hipótesis para determinar si algún coeficiente de la ecuación era significativo, se tuvo suficiente evidencia para rechazar la hipótesis nula (H_0 : β_1 =0, β_2 =0) y aceptar la alternativa (H_1 : β_1 ≠0, β_2 ≠0); por lo que se puede afirmar con 95% de confianza que de las variables independientes X_1 = ln[(VG_i)(VA_j)], X_2 = ln(D_{ij}), al menos una es significativa; es decir, que al menos una variable independiente sirve para explicar parte del comportamiento de la variable dependiente Ln(V_{ij}), que es el logaritmo del flujo de carga entre el nodo i y el destino j dentro de la red de carga internacional de servicio de fletamento.

El coeficiente ajustado de determinación (cuadro 6.14) indica que las variables X_1 = $ln[(VG_i)(VA_j)]$, X_2 = $ln(D_{ij})$ explican 57.32% del comportamiento de la variable dependiente Y= $ln(V_{ij})$, es decir, del logaritmo del flujo de carga entre dos arcos.

Cuadro 6.14

Resumen de los indicadores estadísticos de la ecuación de regresión lineal múltiple de la red de carga internacional de servicio de fletamento

Indicadores estadísticos de la regresión lineal múltiple				
Coeficiente de correlación múltiple	0.766010			
Coeficiente de determinación R ²	0.586772			
R ² ajustado	0.573223			
Error típico	0.871475			
Observaciones	64			

En el cuadro 6.15 se presentan algunos estadísticos para la realización de las pruebas de hipótesis que se efectuaron para cada uno de los coeficientes estimados en la ecuación de regresión (6.16). En dichas pruebas de hipótesis se obtuvo que el coeficiente de $X_1=\ln[(VG_i)(VA_j)]$ fue significativo (95% de confianza), pero que el coeficiente de $X_2=\ln(D_{ij})$ no resultó significativo (95% de confianza).

Cuadro 6.15

Estadísticos de la prueba de hipótesis para los coeficientes de la ecuación de regresión lineal múltiple de la red de carga internacional de servicio de fletamento

	Coeficientes	Error típico	Estadístico t	Probabilidad
Intercepción	0.443521	0.865018	0.512730	0.609992
Variable X ₁				
"In (VG*VA)"	0.444829	0.052668	8.445976	7.5422E-12
Variable X 2				
"ln (D)"	-0.154122	0.127157	-1.212065	0.230162

Fuente: Elaboración personal

A partir de la ecuación de regresión lineal múltiple estimada (6.16), se obtuvo la estimación los parámetros (α , β y δ) del modelo gravitacional no acotado (6.17) y (6.18).

$$V_{ij} = 1.558183 (VG_i VA_j)^{0.444829} D_{ij}^{-0.154122}$$
(6.17)

$$V_{ij} = 1.558183 \frac{\left(VG_i \cdot VA_j\right)^{0.444829}}{D_{ij}^{0.154122}}$$
(6.18)

Con base en los resultados se concluye que la distribución de la carga aérea de la red de carga internacional de servicio de fletamento (del año 2003) no tiene una fuerte analogía gravitacional, por lo que no es recomendable utilizar el modelo gravitacional no acotado (6.18).

6.3.3 Modelo gravitacional de la red de carga internacional regular y de fletamento

La información que se utilizó para obtener los logaritmos naturales de las variables y a partir de ello la estimación de la ecuación de regresión lineal múltiple (6.19), se puede ver en la tabla del anexo 6.

$$Ln (V_{ij}) = -2.455 + 0.599 \ln[(VG_i)(VA_i)] - 0.174 \ln(D_{ij})$$
(6.19)

El análisis de varianza de la ecuación de regresión (6.16) se muestra en el cuadro 6.16.

Cuadro 6.16

Análisis de varianza de la ecuación de regresión obtenida para la red de carga internacional regular y de fletamento

ANÁLISIS DE VARIANZA						
Fuente de	ente de Grados de Suma de		Promedio de los	ı	Valor crítico	
variación	libertad	cuadrados	cuadrados	<i>F</i>	de F	
Regresión	2	64.601213	32.300606	59.102937	1.64061E-17	
Residuos	97	53.011897	0.546514			
Total	99	117.613109				

Fuente: Elaboración personal

Al realizar la prueba de hipótesis para determinar si algún coeficiente de la ecuación era significativo, se tuvo suficiente evidencia para rechazar la hipótesis nula (H_0 : β_1 =0, β_2 =0) y aceptar la alternativa (H_1 : β_1 ≠0, β_2 ≠0), por lo que se puede afirmar con 95% de confianza que de las variables independientes X_1 = $ln[(VG_i)(VA_j)]$, X_2 = $ln(D_{ij})$, al menos una sirve para explicar parte del comportamiento de la variable dependiente $Ln(V_{ij})$, que es el logaritmo del flujo de carga entre el nodo i y el destino j dentro de la red de carga internacional regular y de fletamento.

El coeficiente ajustado de determinación (cuadro 6.17) indica que las variables X_1 = $ln[(VG_i)(VA_j)]$, X_2 = $ln(D_{ij})$ explican 53.99% del comportamiento de la variable dependiente Y= $ln(V_{ij})$, es decir, del logaritmo del flujo de carga entre dos arcos.

Cuadro 6.17

Resumen de los indicadores estadísticos de la ecuación de regresión lineal múltiple de la red de carga internacional regular y de fletamento

Indicadores estadísticos de la regresión lineal múltiple				
Coeficiente de correlación múltiple	0.741127			
Coeficiente de determinación R ²	0.549269			
R ² ajustado	0.539975			
Error típico	0.739266			
Observaciones	100			

En el cuadro 6.18 se presentan algunos estadísticos para las pruebas hipótesis que se efectuaron en cada uno de los coeficientes estimados en la ecuación de regresión (6.19). En dichas pruebas de hipótesis se obtuvo que el coeficiente de $X_1=ln[(VG_i)(VA_j)]$ fue significativo (95% de confianza), pero que el coeficiente de $X_2=ln(D_{ii})$ no fue significativo (95% de confianza).

Cuadro 6.18

Estadísticos de la prueba de hipótesis para los coeficientes de la ecuación de regresión lineal múltiple de la red de carga internacional regular y de fletamento

	Coeficientes	Error típico	Estadístico t	Probabilidad
Intercepción	-2.454816	1.127505	-2.177211	0.031891
Variable X ₁				
"In (VG*VA)"	0.599870	0.056013	10.709421	3.96898E-18
Variable X ₂				
"ln (D)"	-0.173728	0.104775	-1.658107	0.100526

Fuente: Elaboración personal

A partir de la ecuación de regresión lineal múltiple estimada (6.19), se obtuvo la estimación los parámetros (α , β y δ) del modelo gravitacional no acotado (6.20) y (6.21).

$$V_{ij} = 0.085879 (VG_i VA_i)^{0.599870} D_{ij}^{-0.173728}$$
(6.20)

$$V_{ij} = 0.085879 \frac{\left(VG_i \cdot VA_j\right)^{0.599870}}{D_{ij}^{0.173728}}$$
(6.21)

Se concluye que la distribución de la carga aérea de la red de carga internacional regular y de fletamento (del año 2003) no tiene una fuerte analogía gravitacional, por lo que no es recomendable utilizar el modelo gravitacional no acotado (6.21).

6.4 Obtención de los parámetros de los modelos gravitacionales que abarcan tanto el ámbito nacional como internacional, y determinación de la significancia de los mismos

6.4.1 Modelo gravitacional de la red de carga regular nacional e internacional

La información que se utilizó para obtener la estimación de la ecuación de regresión lineal múltiple (6.22), se puede ver en la tabla del anexo 7.

$$Ln(V_{ij}) = -3.940 + 0.549 \ln[(VG_i)(VA_i)] + 0.093 \ln(D_{ij})$$
(6.22)

El análisis de varianza de la ecuación de regresión (6.16) se muestra en el cuadro 6.19.

Cuadro 6.19

Análisis de varianza de la ecuación de regresión obtenida para la red de carga regular nacional e internacional

ANÁLISIS DE VARIANZA							
Fuente de variación	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F		
Regresión	2	123.291458	61.645729	124.016421	1.82959E-33		
Residuos	163	81.023575	0.497077				
Total	165	204.315033					

Fuente: Elaboración personal

Al realizar la prueba de hipótesis para determinar si algún coeficiente de la ecuación era significativo, se tuvo suficiente evidencia para rechazar la hipótesis nula (H_0 : β_1 =0, β_2 =0) y aceptar la alternativa (H_1 : β_1 ≠0, β_2 ≠0), por lo que se puede afirmar con 95% de confianza que de las variables independientes X_1 = ln[(VG_i)(VA_j)], X_2 = ln(D_{ij}), al menos una sirve para explicar parte del comportamiento de la variable dependiente Ln(V_{ij}), que es el logaritmo del flujo de carga entre el nodo i y el destino j dentro de la red de carga regular nacional e internacional.

El coeficiente ajustado de determinación (cuadro 6.20) indica que las variables X_1 = $In[(VG_i)(VA_j)]$, X_2 = $In(D_{ij})$ explican 59.85% del comportamiento de la variable dependiente Y= $In(V_{ij})$, es decir, del logaritmo del flujo de carga entre dos arcos.

Cuadro 6.20

Resumen de los indicadores estadísticos de la ecuación de regresión lineal múltiple de la red de carga regular nacional e internacional

Indicadores estadísticos de la regresión lineal múltiple				
Coeficiente de correlación múltiple	0.776813			
Coeficiente de determinación R ²	0.603438			
R ² ajustado	0.598572			
Error típico	0.705037			
Observaciones	166			

Fuente: Elaboración personal

En el cuadro 6.21 se presentan algunos estadísticos para las pruebas hipótesis que se efectuaron para cada uno de los coeficientes estimados en la ecuación de regresión (6.22). En dichas pruebas de hipótesis se obtuvo que el coeficiente de $X_1=\ln[(VG_i)(VA_j)]$ fue significativo con 95% de confianza, en tanto que el coeficiente de $X_2=\ln(D_{ii})$ no resultó significativo con 95% de confianza.

Cuadro 6.21

Estadísticos de la prueba de hipótesis para los coeficientes de la ecuación de regresión lineal múltiple de la red de carga regular nacional e internacional

	Coeficientes	Error típico	Estadístico t	Probabilidad
Intercepción	-3.939847	0.748621	-5.262807	4.41628E-07
Variable X ₁ "In (VG*VA)"	0.548666	0.036569	15.003719	1.60288E-32
Variable X ₂ "In (D)"	0.093110	0.062534	1.488942	0.138435

Fuente: Elaboración personal

A partir de la ecuación de regresión lineal múltiple estimada (6.22), se obtuvo la estimación los parámetros (α , β y δ) del modelo gravitacional no acotado (6.23) y (6.24).

$$V_{ij} = 0.019451 (VG_i VA_j)^{0.548666} D_{ij}^{0.093110}$$
(6.23)

$$V_{ij} = 0.019451 \frac{\left(VG_i \cdot VA_j\right)^{0.548666}}{D_{ij}^{-0.093110}}$$
(6.24)

Se concluye que la distribución de la carga aérea de la red de carga regular nacional e internacional (del año 2003) no tiene una fuerte analogía gravitacional, por lo que no es recomendable utilizar el modelo gravitacional no acotado (6.24).

6.4.2 Modelo gravitacional de la red de carga de fletamento nacional e internacional

La información que se utilizó para obtener la estimación de la ecuación de regresión lineal múltiple (6.25), se puede ver en la tabla del anexo 8.

$$Ln(V_{ij}) = 0.134 + 0.409 ln[(VG_i)(VA_i)] - 0.058 ln(D_{ij})$$
 (6.25)

Cuadro 6.22

Análisis de varianza de la ecuación de regresión obtenida para la red de carga de fletamento nacional e internacional

	ANÁLISIS DE VARIANZA							
Fuente de	Promedio de Volen arriica de							
variación	Grados de libertad	Suma de cuadrados	los cuadrados	F	Valor crítico de F			
Regresión	2	73.861343	36.930671	51.589095	3.56038E-15			
Residuos	81	57.984820	0.715862					
Total	83	131.846163						

Fuente: Elaboración personal

El análisis de varianza de la ecuación de regresión (6.16) se muestra en el cuadro 6.22.

Al realizar la prueba de hipótesis para determinar si algún coeficiente de la ecuación era significativo, se tuvo suficiente evidencia para rechazar la hipótesis nula (H_0 : β_1 =0, β_2 =0) y aceptar la alternativa (H_1 : β_1 ≠0, β_2 ≠0), por lo que se puede afirmar con 95% de confianza que de las variables independientes X_1 = $In[(VG_i)(VA_j)], X_2$ = $In(D_{ij}),$ al menos una sirve para explicar parte del comportamiento de la variable dependiente $Ln(V_{ij})$, que es el logaritmo del flujo de carga entre el nodo i y el destino j dentro de la red de carga de fletamento nacional e internacional.

El coeficiente ajustado de determinación (cuadro 6.23) indica que las variables $X_1 = \ln[(VG_i)(VA_j)]$, $X_2 = \ln(D_{ij})$ explican 54.93% del comportamiento de la variable dependiente $Y = \ln(V_{ij})$, es decir, del logaritmo del flujo de carga entre dos arcos.

Cuadro 6.23

Resumen de los indicadores estadísticos de la ecuación de regresión lineal múltiple de la red de carga de fletamento nacional e internacional

Indicadores estadísticos de la regresión lineal múltiple				
Coeficiente de correlación múltiple	0.748471			
Coeficiente de determinación R ²	0.560209			
R ² ajustado	0.549349			
Error típico	0.846086			
Observaciones	84			

Fuente: Elaboración personal

En el cuadro 6.24 se presentan algunos estadísticos para las pruebas hipótesis que se efectuaron en cada uno de los coeficientes estimados en la ecuación de regresión (6.25). En dichas pruebas de hipótesis se obtuvo que el coeficiente de $X_1=\ln[(VG_i)(VA_j)]$ fue significativo (95% de nivel de confianza) pero el coeficiente de $X_2=\ln(D_{ii})$ no resultó significativo (95% de nivel de confianza).

Cuadro 6.24

Análisis de varianza de la ecuación de regresión obtenida para la red de carga de fletamento nacional e internacional

	Coeficientes	Error típico	Estadístico t	Probabilidad
Intercepción	0.134096	0.801408	0.167326	0.86753064
Variable X ₁				
"In (VG*VA)"	0.408717	0.041289	9.898946	1.34E-15
Variable X 2				
"ln (D)"	-0.057712	0.094044	-0.613671	0.541152

Fuente: Elaboración personal

A partir de la ecuación de regresión lineal múltiple estimada (6.22), se obtuvo la estimación los parámetros (α , β y δ) del modelo gravitacional no acotado (6.26) y (6.27).

$$V_{ij} = 1.143503 (VG_i VA_j)^{0.408717} D_{ij}^{-0.057712}$$
(6.26)

$$V_{ij} = 1.143503 \frac{\left(VG_i \cdot VA_j\right)^{0.408717}}{D_{ij}^{0.057712}}$$
(6.27)

Se concluye que la distribución de la carga aérea de la red de carga de fletamento nacional e internacional (del año 2003) no tiene una fuerte analogía gravitacional por lo que no es recomendable utilizar el modelo gravitacional no acotado (6.27).

6.4.3 Modelo gravitacional de la red de carga nacional e internacional regular y de fletamento

La información que se utilizó para obtener la estimación de la ecuación de regresión lineal múltiple (6.28), se puede ver en la tabla del anexo 9.

$$Ln(V_{ij}) = -3.076 + 0.496 \ln[(VG_i)(VA_j)] + 0.104 \ln(D_{ij})$$
 (6.28)

El análisis de varianza de la ecuación de regresión (6.16) se muestra en el cuadro 6.25.

Cuadro 6.25

Análisis de varianza de la ecuación de regresión obtenida para la red de carga nacional e internacional regular y de fletamento

	ANÁLISIS DE VARIANZA							
Fuente de variación	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F			
Regresión	2	149.521442	74.760721	138.798330	2.8252E-38			
Residuos	196	105.571165	0.538628					
Total	198	255.092607						

Fuente: Elaboración personal

Al realizar la prueba de hipótesis para determinar si algún coeficiente de la ecuación era significativo, se tuvo suficiente evidencia para rechazar la hipótesis nula (H_0 : β_1 =0, β_2 =0) y aceptar la alternativa (H_1 : β_1 ≠0, β_2 ≠0), por lo que se puede afirmar con 95% de confianza que de las variables independientes X_1 = ln[(VG_i)(VA_j)], X_2 = ln(D_{ij}), al menos una sirve para explicar parte del comportamiento de la variable dependiente Ln(V_{ij}), que es el logaritmo del flujo de carga entre el nodo i y el destino j dentro de la red de carga nacional e internacional regular y de fletamento.

El coeficiente ajustado de determinación (cuadro 6.26) indica que las variables X_1 = $ln[(VG_i)(VA_j)]$, X_2 = $ln(D_{ij})$ explican 58.19% del comportamiento de la variable dependiente Y= $ln(V_{ij})$, es decir, del logaritmo del flujo de carga entre dos arcos.

Cuadro 6.26

Resumen de los indicadores estadísticos de la ecuación de regresión lineal múltiple de la red de carga nacional e internacional regular y de fletamento

Indicadores estadísticos de la regresión lineal múltiple				
Coeficiente de correlación múltiple	0.765602			
Coeficiente de determinación R ²	0.586146			
R ² ajustado	0.581923			
Error típico	0.733913			
Observaciones	199			

Fuente: Elaboración personal

En el cuadro 6.27 se presentan algunos estadísticos para las pruebas de hipótesis que se efectuaron para cada uno de los coeficientes estimados en la ecuación de regresión (6.28). En dichas pruebas de hipótesis se obtuvo que el coeficiente de $X_1=\ln[(VG_i)(VA_j)]$ fue significativo (95% de confianza), pero el coeficiente de $X_2=\ln(D_{ij})$ no fue significativo (95% de confianza).

Cuadro 6.27

Análisis de varianza de la ecuación de regresión obtenida para la red de carga nacional e internacional regular y de fletamento

	Coeficientes	Error típico	Estadístico t	Probabilidad
Intercepción	-3.076229	0.655160	-4.695385	4.99362E-06
Variable X ₁				
"In (VG*VA)"	0.495768	0.031586	15.695908	1.72008E-36
Variable X ₂ "In (D)"	0.104440	0.059371	1.759110	0.080119

Fuente: Elaboración personal

A partir de la ecuación de regresión lineal múltiple estimada (6.28), se obtuvo la estimación los parámetros (α , β y δ) del modelo gravitacional no acotado (6.29) y (6.30).

$$V_{ij} = 0.046133 (VG_i VA_j)^{0.495768} D_{ij}^{0.104440}$$
(6.29)

$$V_{ij} = 0.046133 \frac{\left(VG_i \cdot VA_j\right)^{0.495768}}{D_{ij}^{-0.104440}}$$
(6.30)

Se concluye que la distribución de la carga aérea de la red de carga nacional e internacional regular y de fletamento (del año 2003) no tiene una fuerte analogía

gravitacional, por lo que no es recomendable utilizar el modelo gravitacional no acotado (6.30).

6.5 Análisis y discusión de resultados

De los nueve casos analizados, sólo dos ecuaciones presentaron significancia en sus dos variables independientes; en los siete casos restantes la variable "distancia" mostró una baja correlación y, por tanto, una baja capacidad explicativa con respecto a la intensidad de los flujos de carga entre orígenes y destinos (anexo 10).

De los dos casos mencionados en el párrafo anterior y que corresponden a los movimientos de mercancías en la red doméstica de servicios de fletamento y a la red internacional de servicios regulares, se puede afirmar que existe un comportamiento gravitacional del fenómeno de la distribución de carga entre los nodos de la red; pero en los otros casos, la carga se distribuye de manera más o menos independiente de la distancia a la que se encuentren el aeropuerto origen y el aeropuerto destino.

Una situación que implica potencialmente algunas dificultades adicionales para la modelación de la distribución de carga en el ámbito internacional, deriva del hecho de que en la actualidad hay una notable tendencia entre los prestadores de servicios aeronáuticos, de utilizar algunos aeropuertos como centros concentradores y redistribuidores de carga, de acuerdo con la estrategia de distribución llamada "Hub and Spoke".

El empleo de la estrategia Hub and Spoke puede provocar que el verdadero destino de una operación aeronáutica quede "oculto", debido a que los análisis se han realizado con datos que registran los orígenes – destinos "directos", en los que no se puede distinguir un posible destino final o "indirecto".

Por el hecho de que en los Estados Unidos se encuentran varios de los "hubs" mundiales, este problema puede estar presente en alguna fracción indeterminada de los movimientos que aparecen con origen o destino en ese país, puesto que algunos movimientos pudieran dirigirse finalmente a otros países, posiblemente asiáticos o del Caribe.

De manera similar, la concentración de los corredores aéreos hacia y desde Europa en los aeropuertos de Luxemburgo y Ámsterdam, hace pensar en el posible funcionamiento de estas terminales como "hubs" aéreos e incluso terrestres, desde los cuales se estaría distribuyendo carga hacia otros países europeos o incluso del continente africano.

Conviene señalar que no obstante el posible problema señalado en los párrafos anteriores, en la investigación se obtuvo que el modelo gravitacional correspondiente a los movimientos internacionales (6.15) fue uno de los que mostraron un comportamiento más cercano al paradigma gravitacional, presentando mayor sensibilidad respecto a la distancia. La mayor consistencia del

caso internacional respecto al comportamiento gravitacional, pudiera deberse al hecho de que las distancias de estas operaciones son mayores que las del ámbito doméstico.

Durante la investigación se han desarrollado dos posibles explicaciones para el hallazgo de una baja correlación entre la distancia y la intensidad de los flujos.

La primera hipótesis consiste en que en el transporte aéreo, la distancia de viaje no es una variable que refleje suficientemente la impedancia al transporte entre dos puntos en el espacio geográfico. Es decir, en el transporte aéreo de carga la distancia no representa un importante factor reductor de la transferibilidad, al menos para distancias relativamente cortas.

Lo anterior implica que en estos casos la distancia no puede ser la única variable que intervenga en la función de impedancia, sino que se debe diseñar una función del tipo "costo generalizado de transporte" en donde aparezcan otras variables que actúen negativamente hacia el desplazamiento (que sean disuasivas), como el costo, el tiempo total de traslado, o las mermas.

La segunda hipótesis de explicación tiene que ver con la notable falta de simetría direccional de los flujos de carga, pues se encontró que la mayoría de los arcos de la red presentan grandes diferencias entre las intensidades de flujo de carga en un sentido y el sentido opuesto. Esta situación provoca que para una misma distancia, que corresponde a la longitud del arco, se tengan dos valores muy opuestos de intensidad de flujo, lo cual tiende a disminuir la correlación entre la distancia y la intensidad de flujo.

La asimetría direccional es un fenómeno que no se presenta en el transporte aéreo de pasajeros (y en general en el transporte de pasajeros, especialmente en el ámbito urbano); al respecto, Smith y Timberlake (1998), establecen que el número de pasajeros que viajan en un sentido entre cada par de ciudades es por lo general lo más cercano, en términos proporcionales, al número de usuarios que van en la otra dirección. De hecho, muchos compran boletos de viaje redondo. Y también argumentan que otro tipo de flujos entre ciudades parecen ser menos simétricos, como el de mercancías, que sería casi seguramente asimétrico porque la mayoría de los productos o componentes que se envían por aire, presumiblemente serán consumidos (o tal vez incorporados a otro producto transportable) en sus destinos.

7 Conclusiones

El objetivo general de este trabajo fue determinar el patrón general de distribución de la carga que se transporta por el modo aéreo en México, y verificar la existencia de un comportamiento gravitacional en dicho patrón de distribución.

Los datos empíricos utilizados provinieron de la base de datos generada por la Dirección General de Aeronáutica Civil, de la SCT; misma que incluye la totalidad de las operaciones de transporte aéreo de carga registradas en el año 2003 en los ámbitos doméstico e internacional. También se empleó información proveniente de la Dirección General de Planeación de la SCT, y del Instituto Nacional de Estadística, Geografía e Informática.

Los datos se agruparon con base en el tipo de servicio (regular o fletamento), y del ámbito al que corresponden (nacional o internacional). En total, se estudiaron nueve combinaciones de los grupos de información disponibles. El modelo gravitacional que se aplicó en todos los casos es del tipo "no acotado", y se sujetó a una transformación logarítmica con el propósito de convertirlo en una función lineal susceptible de ser analizada mediante técnicas tradicionales de regresión lineal. El uso de la regresión lineal permitió calibrar los parámetros a través del criterio de los mínimos cuadrados, y su posterior validación mediante pruebas estadísticas.

La validación estadística de los modelos resultó satisfactoria respecto a la primera variable independiente (el producto de la carga generada y atraída por los nodos); pero, en general, no fue satisfactoria respecto a la segunda variable independiente (longitud de viaje o distancia). El parámetro de la variable "distancia" se consideró no significativo en siete de los nueve modelos, con un nivel de confianza del 95%.

En dos de los nueve modelos se obtuvieron resultados estadísticamente satisfactorios para las dos variables explicativas; sin embargo, aun en estos dos casos (red nacional de fletamento y red internacional regular) se observa una débil analogía gravitacional, puesto que ambos modelos explican únicamente alrededor del 60% (R²) de los datos de la variable explicada.

Los resultados permiten concluir que la analogía entre el patrón de distribución de los flujos de carga aérea en México, y el comportamiento gravitacional típico no es fuerte. Lo anterior lleva a la recomendación de que la utilización de los modelos gravitacionales en el pronóstico de los flujos de carga por el modo aéreo debe ser cuidadosa, especialmente en lo relativo a la determinación de la función de impedancia, que es donde interviene la variable distancia.

Como consecuencia de la baja analogía gravitacional detectada en el transporte aéreo de carga en México, se rechaza la hipótesis de partida de la presente investigación, ya que se tiene suficiente evidencia para afirmar que la intensidad de los flujos de intercambio de mercancías, que se registró en el 2003 entre los nodos de la red de transporte aéreo de carga en México, no es una función de la

importancia de los nodos como generadores y atractores de carga, y de la impedancia que existe para viajar entre ellos (en términos de la distancia), de manera análoga a un comportamiento gravitacional.

En futuras investigaciones se recomienda utilizar una mayor variedad de funciones de impedancia, en las que se utilice la distancia relativa (o económica) en lugar de emplear únicamente la distancia geométrica. También se aconseja considerar el uso de un mayor número de variables explicativas.

Otro aspecto a investigar en el futuro es la sensibilidad de otros modos de transporte a la distancia física. En particular se considera razonable suponer que el transporte terrestre (especialmente el autotransporte) es más sensible a la distancia física, que el transporte aéreo.

Durante la investigación se han esbozado dos posibles hipótesis para explicar el hallazgo de una baja correlación entre la distancia física y la intensidad de los flujos entre los nodos de la red.

La primera hipótesis consiste en que en el transporte aéreo, la distancia de viaje no es una variable que refleja suficientemente la impedancia a la transferibilidad entre dos puntos en el espacio geográfico. Es decir, en el transporte aéreo de carga, la distancia no significa un importante factor de disuasión a la movilidad, al menos para distancias cortas o relativamente cortas.

Lo anterior implica que en estos casos, la distancia no puede ser la única variable que intervenga en la función de impedancia, sino que se debe diseñar una función del tipo "costo generalizado de transporte" en donde aparezcan otras variables que actúen negativamente hacia la movilidad (que sean disuasivas), como el costo, el tiempo total de traslado, o las mermas.

La segunda hipótesis de explicación tiene que ver con la notable falta de simetría direccional de los flujos de carga, pues se encontró que la mayoría de los arcos de la red presentan grandes diferencias entre las intensidades de flujo de carga en un sentido y el sentido opuesto. Esta situación provoca que para una misma distancia, que corresponde a la longitud del arco, se tenga dos valores muy opuestos de intensidad de flujo, lo cual tiende a disminuir la correlación entre la distancia y la intensidad de flujo.

El hallazgo de una cierta independencia entre la intensidad de los flujos y la distancia física recorrida es un aporte que se considera importante desde la perspectiva teórica del análisis espacial del transporte, puesto que aparentemente contradice algunas premisas fundamentales que, en consecuencia, deben ser afinadas mediante conceptos y relaciones adicionales.

En los párrafos siguientes se presentan conclusiones respecto al análisis espacial que se practicó a la red de transporte aéreo de carga.

En el 2003 existió una gran concentración de carga en unos cuantos arcos de la red; este fenómeno se presentó tanto en el ámbito nacional como internacional. En términos generales se observa una falta de simetría bidireccional en los arcos de todas las redes modeladas, exceptuando la de carga internacional de fletamento, ya que ésta presentó un grado de simetría mayor en la mayoría de sus arcos.

La concentración en nodos y arcos genera una morfología radial de la red (poco reticular) hacia dos o tres nodos (México, Monterrey, Tijuana). El nodo de la Ciudad de México y sus conexiones hacia prácticamente todos los demás nodos de la red, le otorgan una forma característica de erizo marino, debido a su localización centralizada dentro del espacio geográfico mexicano. Por otra parte, la ubicación en los extremos del territorio de los nodos en Tijuana y Monterrey produce morfologías más de tipo cónicas que se superponen con la red radial hacia el centro.

A partir de la jerarquización aeroportuaria en términos del flujo doméstico de carga, se detectó que el aeropuerto de la Ciudad de México es un centro nodal básico, emisor y receptor de grandes cantidades de tráfico de carga aérea; y por tanto, fue denominado núcleo del sistema aeroportuario de carga doméstica del territorio mexicano. Los cuatro que le siguen en orden de importancia en términos de su flujo de carga doméstica anual (año 2003), son los de Guadalajara, Monterrey, Tijuana y San Luis Potosí; este último ha tenido un aumento en el flujo de carga que maneja anualmente, debido a que alberga el centro de operaciones de la empresa de paquetería Estafeta Mexicana.

En la red de carga internacional regular y de fletamento se observó que 48.7% de la carga aérea que entra al territorio mexicano, y 65% de la carga que sale tiene como origen y destino (intermedio o final) respectivamente, algún aeropuerto estadounidense; esto se debe a la enorme importancia de los intercambios comerciales entre los dos países, pero también es posible que el porcentaje se vea incrementado por el hecho de que en los Estados Unidos de Norteamérica se encuentran importantes *hubs* aéreos internacionales, y que parte de la carga que se dirige a ellos pudiera tener un destino final en otra parte del mundo, y sólo se cambió de avión en el territorio estadounidense.

En la red de carga internacional regular se detectaron fuertes flujos de carga entre el aeropuerto de la Ciudad de México y los aeropuertos de Ámsterdam, París y Los Ángeles; el de Guadalajara tiene una fuerte relación con el de Memphis; estos aeropuertos situados fuera del territorio mexicano estuvieron entre los primeros 15 a nivel internacional en el 2003 debido a los altos volúmenes de carga que manejaron.

Al determinar la jerarquía espacial de los aeropuertos nacionales con el método Nystuen-Dacey, se detectó que los de Tijuana y San Luis Potosí son los únicos dos nodos subdominantes; pero de acuerdo con la regla rango-tamaño, dichos aeropuertos tienen una jerarquía no mayor a la de los de Guadalajara y Monterrey; aún así sigue siendo muy pronunciado el dominio del aeropuerto de México, al ser éste el único nodo dominante de la red nacional regular y de fletamento.

Se recomienda que conforme aumente la demanda del transporte aéreo de carga en México, se realice una cuidadosa planeación y ejecución de proyectos que permitan aumentar el nivel de desarrollo de la red de aeropuertos mexicanos, y mejorar su integración con otros aeropuertos a nivel nacional e internacional.

Se considera que los resultados de este trabajo son de utilidad para los planificadores del transporte, y además como base de futuras investigaciones sobre la modelación del transporte aéreo de carga.

8 Bibliografía

Air Cargo World. Artículo de revista: The World's Top 50 Cargo Airports. Air Cargo World. Vol 7, Num 6 (Jul-Aug, 2004)

Antón Burgos, F.J. Modelos gravitatorios aplicados a la determinación de flujo de tráfico en transporte aéreo. X Congreso de Geografía. AGE. Zaragoza, España (1987)

Backhoff Pohls, Miguel Ángel (2005). Transporte y espacio geográfico. Una aproximación informática. UNAM e Instituto Mexicano del Transporte, México (2005)

Ballou, R. H. Business Logistics Management, Prentice Hall, Englewood (1992)

Black, William. *Transportation: A Geographical Analysis.* Guilford Publications, New York (2003)

Bottum, MacKenzie S. Retail Gravity Model. *Appraisal Journal*, Vol 557 (1989)

Bowen, John. The Geography of Freighter Aircraft Operations in the Pacific Basin. Journal of Transport Geography 12 ELSEVIER (2004)

Bruton, M.J. *Introduction to Transportation Planning*. Hutchinson Technical Education (1970)

Burghouwt, Guillaume; Hakfoort, Jacco; Ritsema van Eck, Jan. The Spatial Configuration of Airline Networks in Europe. Journal of Air Transport Management. ELSEVIER. Vol 9, Issue 5 (Sept 2003)

Carter, Charles. Assumptions Underlying the Retail Gravity Model. Appraisal Journal, Vol 61 (1993)

Camarena Lührs, Margarita. Grandes rutas del espacio social en México. Instituto de Investigaciones Sociales, Universidad Nacional Autónoma de México (1989)

Chías Becerril, Luis. Desarrollo histórico de la aviación comercial mexicana. Investigaciones Geográficas, Boletín del Instituto de Geografía, Universidad Nacional Autónoma de México, Núm 11 (1981)

Cortez, Claude. Flujos comerciales y de transporte, un panorama histórico. Documento Técnico, Núm 13, Instituto Mexicano del Transporte, IMT, Sanfandila, Querétaro (1995)

De la Llata Gómez, Roberto. Estimación de demanda de tránsito en carreteras combinando estudios origen-destino con aforos. Publicación Técnica No 25, Instituto Mexicano del Transporte, Sanfandila, Querétaro (1991)

De la Llata Gómez, Roberto. Estrategias para la realización de estudios origendestino. Publicación Técnica No 48, Instituto Mexicano del Transporte, Sanfandila, Querétaro (1994)

Demetsky J., Michael. Calibration of the Gravity Model for Truck Freight Flow Distribution, Center for Transportation Studies at the University of Virginia (2002)

Dollfus, Oliver. *El espacio geográfico*. Editorial Oikos-Tau, Barcelona, España (1976)

Encarta. Software de Microsoft, versión 2002.

Esteve, Albert; Devolver, Daniel. De la ley rango-tamaño (rank-size) a la ley lognormal: los procesos aleatorios en el crecimiento demográfico de los agregados de población. VII Congreso Asociación de Demografía Histórica, Granada. Centre d'Estudis Demográfics. Universitat Autónoma de Barcelona, España (2004)

Garrido H. **Rodrigo.** *Modelación de sistemas de distribución de carga.* Ediciones Universidad Católica de Chile (2001)

Garza, Gustavo; Sobrino, Jaime. Industrialización periférica en el sistema de ciudades de Sinaloa. El Colegio de México. México (1989)

Gatto, Francisco. Cambio tecnológico neofordista y reorganización productiva. Primeras reflexiones sobre sus implicaciones territoriales", en Francisco Alburquerque Llorens, Carlos A. De Mantos, y Ricardo Jordán Fuchs, Revolución tecnológica y reestructuración productiva: impactos y desafíos territoriales, Buenos Aires, Arg. ILPES y Pontificia Universidad Católica de Chile (1990)

Gaudry, Marc. The Robust Gravity Form in Transport and Trade Models. Bureau d'économie théorique et appliquée (2002).

Giménez I Capdevila, Rafael. La geografía de los transportes en busca de su identidad. Revista Geo Crítica, Cátedra de Geografía Humana, Facultad de Geografía e Historia, Universidad de Barcelona. No 62 (marzo 1986)

Gitlesen, Jens Petter; Jörnsten, Kurt. A Disaggregated Gravity Model. Norwegian School of Economics Norwegian School of Economics and Business Administration (2000)

Hesse, Markus; Rodrigue, Jean-Paul. The Transport Geography of Logistics and Freight Distribution. Journal of Transport Geography 12, ELSEVIER (2004)

Holguín-Veras, José; Thorson, Ellen. Trip Length Distributions in Commodity Based and Trip Based Freight Demand Modeling. *Journal of Transportation Research Board*, Vol 1707 (2000)

INEGI. Estadística de comercio exterior de México. Importaciones y exportaciones según modo de transporte aéreo, 1999-2003. Instituto Nacional de Estadística Geografía e Informática (2003)

International Logistics Quality Institute (ILQI). The 2003 Air Cargo Quality Survey. Vol 7, Num 2, Mar 2004. Air Cargo World, International Edition. Washington, DC (www.logisticsquality.org)

Krueckeberg, Donald; Silvers, Arthur. *Análisis de planificación urbana, métodos y modelos.* Limusa (1978)

Kutanoglu, E. Modeling and Analysis of Transportation Flows Created by Ecommerce Transactions. Mack-Blackwell Transportation Center Board Meeting, Fayetteville, AR (2006)

Luoma, Martti; Mikkonen, Kauko; Palomgki, Mauri. How Transport Development Influences the Distance-decay Parameter of the Gravity Model. University of Vaasa, Butterworth-Heinemann Ltd (1993)

Massiris Cabeza, Ángel Miguel. Políticas latinoamericanas de ordenamiento territorial. Realidades y desafíos. Tesis para obtener el grado de Doctor en Geografía. UNAM (Jun 2003)

Manheim, Marvin L. Fundamentals of Transportation Systems Analysis. Vol I. The Massachusetts Institute of Technology. MIT Press, Cambridge, Mass (1979)

Mendoza Díaz, Alberto; Rico Rodríguez, Alfonso; Jimenez Sanchez, José Elías; Mayoral Grajeda, Emilio. Un análisis de reparto modal de carga entre carretera y ferrocarril. Publicación Técnica No 76, Instituto Mexicano del Transporte, Sanfandila, Querétaro (1995)

Mendoza Díaz, Alberto; Rico Rodríguez, Alfonso; De Alba Rosano, Miguel. Oportunidad de intermodalismo carretera-ferrocarril. Publicación Técnica No 95, Instituto Mexicano del Transporte, Sanfandila, Querétaro (1997)

Mendoza Díaz, Alberto; Gil Anaya, Claudia Zulema; Reyes Ramírez, Rosemberg. Modelación multiproducto de los flujos de carga en las redes carretera y ferroviaria. Publicación Técnica No 126, Instituto Mexicano del Transporte, Sanfandila, Querétaro (1999)

Mendoza Díaz, Alberto; Gil Anaya, Claudia Zulema; Trejo Ramírez, Juan Manuel. Un análisis multiproducto a través de redes del transporte terrestre de carga entre México y Estados Unidos. Publicación Técnica No 137, Instituto Mexicano del Transporte, Sanfandila, Querétaro (2000)

Mendoza Díaz, Alberto; Valdez Oviedo, Nestor Adrián. Desarrollo del Método STAN para la operación del autotransporte de carga por la red carretera. Publicación Técnica No 206, Instituto Mexicano del Transporte, Sanfandila, Querétaro (2002)

Mendoza Díaz, Alberto; Centeno Saad, Agustín. Modelo de asignación intermodal multiproducto para las operaciones de carga por autotransporte y ferrocarril. Publicación Técnica No 222, Instituto Mexicano del Transporte, Sanfandila, Querétaro (2003)

Meyer, J. R.; Peck, M. J.; Stenason, J.; Zwick, C. The Economics of Competition in the Transportation Industries. Cambridge, Mass, Harvard University Press (1959)

Mikkonen, Kauko; Luoma, Martti. The Parameters of the Gravity Model are Changing - how and why? Journal of Transport Geography 7, Pergamon (1999)

Moreno Quintero, Eric. Problemas de ruteo vehicular en la recolección y distribución óptimas de carga. Publicación Técnica No 144, Instituto Mexicano del Transporte, Sanfandila, Querétaro (2000)

Moreno Quintero, Eric. El sobrepeso en el transporte carretero de carga: elementos para su estudio y control. Publicación Técnica No 250, Instituto Mexicano del Transporte, Sanfandila, Querétaro (2005)

Moreno Quintero, Eric. Control de flujos carreteros de carga por inducción en la selección de ruta. Publicación Técnica en edición, Instituto Mexicano del Transporte, Sanfandila, Querétaro (2005)

Nagurney, Anna. Networks: Contribution to the Encyclopedia of Science, Technology and Ethics. Isenberg School of Management University of Massachusetts. Mcmillan, USA (2003)

Núñez, Gilberto. Importancia de la aplicación de la geomática para el ordenamiento territorial en México. Tesis, UNAM (2003)

Ortúzar Salas, Juan de Dios. *Modelling Transport.* 2^{da} edición. Editorial John Wiley & Sons (1994)

Porojan, A. Trade Flows and Spatial Effects: The Gravity Model Revisited. Open Economies Review 12, Jul 2001. Kluwer Academic Publishers. Impreso en The Netherlans

Potrykowski, Marek; Taylor, Zbigniew. *Geografía del transporte.* Ariel Geografía. Editorial Ariel, S. A., Barcelona, España (1984)

Rendeiro, R. Las infraestructuras aeroportuarias en España. Papeles de Economía Española, No 82 (1999)

Rico Galeana, Óscar Armando. El transporte aéreo de carga doméstica en *México.* Publicación Técnica No 168, Instituto Mexicano del Transporte, Sanfandila, Querétaro (2001)

Rico Galeana, Óscar Armando. La red de transporte aéreo de carga en México. Instituto Mexicano del Transporte. Boletín bimestral "Notas", No 58 (Mayo 2001) http://www.imt.mx

Rico Galeana, Óscar Armando. *Modelación matemática de fenómenos de transporte: Un ejemplo en el transporte aéreo de carga en México.* Genio e ingenio, Revista trimestral de la Escuela Nacional de Estudios Profesionales Acatlán, Universidad Nacional Autónoma de México. Año 2, Núm doble 6 – 7, México (Enero 2002)

Rico Galeana, Óscar Armando. Un perfil actual del transporte aéreo de carga en México. Instituto Mexicano del Transporte. Boletín bimestral "Notas", No 65 (Jul 2002) http://www.imt.mx

Rico Galeana, Óscar Armando. Estrategias de actuación comercial para las terminales con baja utilización en la nueva estructura aeroportuaria mexicana. Instituto Mexicano del Transporte. Publicación Técnica No 212. Sanfandila, Querétaro (2002)

Rico Galeana, Óscar Armando. La "Ley de Zipf" y la jerarquización de nodos en una red de transporte. Instituto Mexicano del Transporte. Boletín bimestral "Notas", No 69 (Mar 2003) http://www.imt.mx

Rico Galeana, Óscar Armando. El reposicionamiento del aeropuerto de San Luis Potosí en el movimiento de carga aérea doméstica. Instituto Mexicano del Transporte. Boletín bimestral "Notas", No 73 (Julio 2003) http://www.imt.mx

Rico Galeana, Óscar Armando. Los aeropuertos y la perspectiva logística. Instituto Mexicano del Transporte. Boletín bimestral "Notas", No 7 (Ago 2003) http://www.imt.mx

Rico Galeana, Óscar Armando. Estrategias de actuación comercial para las terminales con baja utilización en la nueva estructura aeroportuaria mexicana. Instituto Mexicano del Transporte. Boletín bimestral "Notas", No 83 (May 2004) http://www.imt.mx

Rico Galeana, Óscar Armando. *Problemas en la modelación del transporte de carga: un caso gravitacional.* Instituto Mexicano del Transporte. Boletín bimestral "Notas", No 92 (Feb 2005) http://www.imt.mx

Rico Galeana, Óscar Armando. "The New Structure of Mexican Airport System after Privatization". Air Transport Research Society (ATRS). 9th ATRS World Conference 2005, Federal University of Rio de Janeiro, Brasil (Jul 2005)

Rico Galeana, Óscar Armando. Análisis espacial del transporte aéreo de carga en México. Publicación Técnica No 264, Instituto Mexicano del Transporte, Sanfandila, Querétaro (2005)

Rodrigue, J. P. et al. Transport Geography on the Web, Hofstra University, Department of Economics & Geography (2003) http://people.hofstra.edu/geotrans}

Roy, John R. y Thill, Jean-Claude. Spatial Interaction Modelling. Regional Science (2004)

Salgado Rivera, Daniel. "Algunos elementos del espacio geográfico". Revista "Notas" (Nov 1997) Aguascalientes; INEGI

Samuelson, Paul A. Spatial Price Equilibrium and Linear Programming. The American Economic Review, Vol 42, No 3 (1952)

Santos, Milton. Espacio y método. Universidad de Barcelona, España (1986)

Sánchez, Joan-Eugeni. Espacio, economía y sociedad. Siglo XXI de España Ed. Madrid (1991)

Seguí Pons, Joana M. *Geografía de redes y sistemas de transporte.* Serie Espacios y Sociedades; No 16. Madrid. Edit Síntesis (1991)

Shen, Guoqiang. Reverse -fitting the Gravity Model to Inter-city Airline Passenger flows by an Algebraic Simplification, Department of City and Regional Planning, University of Oklahoma, Journal of Transport Geography (2004)

Smith, David; Timberlake, Michael. "Cities and the Spatial Articulation of the World Economy through Air Travel", en "Space and Transport in the World-System", editado por Ciccantell, Paul y Bunker, Stephen. Greenwood Press, London (1998)

Taaffe, Edward; Gauthier, Howard; O'Kelly, Morton. *Geography of* Transportation. 2da Ed. Prentice Hall, New Jersey (1996)

Teodorovic, Dusan. *Airline Operations Research*. Gordon and Breach Science Publishers. Transportation Studies Vol 10. Ámsterdam, Holanda (1988)

Thomson, J. M. *Teoría económica del transporte*. Alianza Editorial (1976)

Ubøe, Jan. Aggregation of Gravity Models for Journeys-to-work. Norwegian School of Economics and Business Administration (2001)

Wall, Howard. Using the Gravity Model to Estimate the Costs of Protection. Review, Jan/Feb 1999. Federal Reserve Bank of St. Louis

Wanjala Musila, Jacob. The Common Market for Eastern and Southern Africa and Kenya's Export Trade, Athabasca University, Alberta, Canadá (2004)

Webster, E. A Gravity Model Analysis of the Effect of Regional Policies to Attract Foreign Tourists. *Journal of Applied Business Research*, Vol 9 (1993)

Wilson, G. Transportation and Traffic Management. Alexander Hamilton Institute Incorporated, New York, USA (1946)

Zhang, Anming. Analysis of an International Air-cargo Hub: the Case of Hong Kong. Journal of Air Transport Management, Vol 9, Issue 2 (Mar 2003) ELSEVIER, USA

Anexo 1. Arcos de las redes de transporte aéreo de carga doméstica en México

Cuadro A1.1

Red de carga nacional regular para el año 2003

	NODO ORIGEN	NODO DESTINO	FLUJO O-D (ton)	CARGA GENERADA NODO ORIGEN (ton)	CARGA ATRAÍDA NODO DESTINO (ton)	LONGITUD DEL ARCO (km)
1	México	Guadalajara	6922.164	45240.753	11477.088	455.193
2	Guadalajara	México	5842.139	10581.008	23897.882	455.193
3	México	Monterrey	4631.696	45240.753	7700.768	699.744
4	México	Tijuana	3854.633	45240.753	7686.579	2293.365
5	México	Cancún	3599.624	45240.753	3719.565	1299.942
6	Tijuana	México	3526.947	6341.886	23897.882	2293.365
7	Monterrey	Guadalajara	3255.897	7753.808	11477.088	631.261
8	México	Mérida	3114.563	45240.753	3114.563	1011.048
9	Monterrey	México	3100.147	7753.808	23897.882	699.744
10	Guadalajara	Monterrey	2557.287	10581.008	7700.768	631.261
11	Mérida	México	1922.039	1922.039	23897.882	1011.048
12	México	Villahermosa	1810.332	45240.753	1810.332	677.601
13	México	Chihuahua	1397.124	45240.753	1711.013	1232.445
14	México	Hermosillo	1232.328	45240.753	1895.352	1597.406
15	México	San José del Cabo	1228.329	45240.753	1908.154	1157.057
16	México	Tuxtla Gutiérrez	1215.371	45240.753	1215.371	706.184
17	México	Mexicali	1145.736	45240.753	1442.274	2183.340
18	Cancún	México	1118.554	1118.554	23897.882	1299.942
19	México	Pto. Vallarta	1110.880	45240.753	1110.880	643.637
20	México	Veracruz	1074.591	45240.753	1074.591	321.685
21	México	Acapulco	1048.331	45240.753	1048.331	290.124
22	Guadalajara	Tijuana	1023.555	10581.008	7686.579	1886.545
23	Tijuana	Guadalajara	998.662	6341.886	11477.088	1886.545
24	México	Cd. Juárez	969.026	45240.753	1355.075	1544.038
25	México	Del Bajío	939.603	45240.753	1267.630	320.592
26	México	Oaxaca	890.218	45240.753	890.218	367.400
27	México	Culiacán	883.665	45240.753	1169.448	1029.632
28	Tapachula	México	747.395	747.395	23897.882	890.232
29	México	Tampico	736.067	45240.753	736.067	342.634
30	Chihuahua	México	683.133	1054.194	23897.882	1232.445
31	Oaxaca	Tijuana	624.314		7686.579	2660.656

	NODO ORIGEN	NODO DESTINO	FLUJO O-D (ton)	CARGA GENERADA NODO ORIGEN (ton)	CARGA ATRAÍDA NODO DESTINO (ton)	LONGITUD DEL ARCO (km)
32	Villahermosa	México	615.093	615.093	23897.882	677.601
33	Oaxaca	México	563.378	1187.692	23897.882	367.400
34	México	Zihuatanejo	556.572	45240.753	556.572	315.910
35	México	Aguascalientes	516.294	45240.753	743.188	422.460
36	México	Tapachula	511.064	45240.753	511.064	890.232
37	México	Mazatlán	506.028	45240.753	506.028	856.958
38	Culiacán	México	502.757	620.002	23897.882	1029.632
39	México	Torreón	495.476	45240.753	495.476	804.196
40	Monterrey	Tijuana	483.869	7753.808	7686.579	1795.358
41	Cd. Juárez	México	480.167	719.661	23897.882	1544.038
42	México	Ciudad del Carmen	465.551	45240.753	465.551	777.512
43	México	Minatitlán	445.960	45240.753	445.960	512.206
44	La Paz	México	444.334	811.596	23897.882	1257.312
45	Hermosillo	México	417.114	803.184	23897.882	1597.406
46	Del Bajío	México	409.338	685.972	23897.882	320.592
47	Monterrey	Hermosillo	381.207	7753.808	1895.352	1115.556
48	Cuernavaca	Tijuana	376.942	376.942	7686.579	2326.990
49	Tijuana	Monterrey	376.330	6341.886	7700.768	1795.358
50	México	Bahías de Huatulco	369.452	45240.753	369.452	498.951
51	Nuevo Laredo	México	368.282	368.282	23897.882	891.032
52	La Paz	Tijuana	367.262	811.596	7686.579	1138.775
53	México	Chetumal	359.650	45240.753	359.650	1147.937
54	México	La Paz	357.195	45240.753	567.447	1257.312
55	Mazatlán	San José del Cabo	357.033	855.639	1908.154	334.605
56	México	Reynosa	351.126	45240.753	351.126	742.665
57	Mexicali	México	334.287	334.287	23897.882	2183.340
58	Guadalajara	San José del Cabo	322.792	10581.008	1908.154	703.400
59	Tijuana	Cuernavaca	317.537	6341.886	317.537	2326.990
60	Mazatlán	México	300.506	855.639	23897.882	856.958
61	Guadalajara	Mexicali	296.538	10581.008	1442.274	1787.884
62	México	Ciudad Obregón	292.958	45240.753	292.958	1408.651
63	México	Matamoros	289.537	45240.753	289.537	732.948
64	Reynosa	México	289.098	289.098	23897.882	742.665
65	Guadalajara	Hermosillo	281.817	10581.008	1895.352	1202.926
66	Del Bajío	Tijuana	276.634	685.972	7686.579	1974.917
67	Matamoros	México	273.208	273.208	23897.882	732.948
68	Los Mochis	México	261.930	261.930	23897.882	1224.451
69	México	Durango	236.415	45240.753	236.415	758.508
70	México	Los Mochis	236.035	45240.753	236.035	1224.451
71	Chihuahua	Cd. Juárez	235.606	1054.194	1355.075	346.739

	NODO ORIGEN	NODO DESTINO	FLUJO O-D (ton)	CARGA GENERADA NODO ORIGEN (ton)	CARGA ATRAÍDA NODO DESTINO (ton)	LONGITUD DEL ARCO (km)
72	Torreón	México	235.429	235.429	23897.882	804.196
73	México	Ciudad Victoria	234.879	45240.753	234.879	477.157
74	Tijuana	Aguascalientes	226.894	6341.886	743.188	1871.183
75	Tuxtla Gutiérrez	México	225.629	225.629	23897.882	706.184
76	Tijuana	Del Bajío	224.260	6341.886	1267.630	1974.917
77	Hermosillo	Tijuana	222.248	803.184	7686.579	697.977
78	Pto. Vallarta	México	220.698	220.698	23897.882	643.637
79	México	Zacatecas	219.562	45240.753	219.562	509.986
80	Monterrey	Chihuahua	210.938	7753.808	1711.013	656.449
81	Tijuana	La Paz	210.252	6341.886	567.447	1138.775
82	Ciudad Obregón	México	204.915	204.915	23897.882	1408.651
83	México	Manzanillo	204.713	45240.753	204.713	538.790
84	México	Saltillo	198.121	45240.753	198.121	671.941
85	Mazatlán	Tijuana	198.100	855.639	7686.579	1464.971
86	Tijuana	Culiacán	179.346	6341.886	1169.448	1273.443
87	Tijuana	Morelia	173.260	6341.886	292.043	2120.403
88	Acapulco	México	172.488	172.488	23897.882	290.124
89	Veracruz	México	170.521	170.521	23897.882	321.685
90	Hermosillo	Guadalajara	163.822	803.184	11477.088	1202.926
91	Guadalajara	Cd. Juárez	150.443	10581.008	1355.075	1260.795
92	Morelia	Tijuana	141.777	141.777	7686.579	2120.403
93	Cd. Juárez	Guadalajara	136.543	719.661	11477.088	1260.795
94	Chihuahua	Monterrey	135.455	1054.194	7700.768	656.449
95	San José del Cabo	México	128.999	128.999	23897.882	1157.057
96	México	San Luis Potosí	126.893	45240.753	126.893	354.661
97	Tampico	México	120.912	120.912	23897.882	342.634
98	Monterrey	Cancún	119.941	7753.808	3719.565	1456.388
99	México	Lázaro Cárdenas	119.192	45240.753	119.192	464.000
100	México	Morelia	118.783	45240.753	292.043	211.149
101	Ciudad del Carmen	México	117.419	117.419	23897.882	777.512
102	Culiacán	Tijuana	117.245	620.002	7686.579	1273.443
103	México	Tepic	112.684	45240.753	112.684	636.596
104	México	Salina Cruz	112.332	45240.753	112.332	548.000
105	Tijuana	Uruapan	108.398	6341.886	108.398	2077.268
106	Guadalajara	Culiacán	106.437	10581.008	1169.448	613.580
	Monterrey	Del Bajío	103.767	7753.808	1267.630	520.595
108	Cd. Juárez	Chihuahua	102.951	719.661	1711.013	346.739
1	Saltillo	México	101.026		23897.882	671.941
1	Monterrey	Puebla	98.042		98.042	

Cuadro A1.2

Red de carga nacional de servicio de fletamento para el año 2003

	NODO ORIGEN	NODO DESTINO	FLUJO O-D (ton)	CARGA GENERADA NODO ORIGEN (ton)	CARGA ATRAÍDA NODO DESTINO (ton)	LONGITUD DEL ARCO (km)
1	San Luis Potosí	México	2594.321	6825.153	6075.945	354.661
2	Mérida	México	2321.299	2321.299	6075.945	1011.048
3	México	San Luis Potosí	2298.863	4456.120	4097.836	354.661
4	San Luis Potosí	Monterrey	1651.081	6825.153	1986.814	396.504
5	San Luis Potosí	Culiacán	1289.766	6825.153	1289.766	718.000
6	Tijuana	Hermosillo	1265.325	1415.599	2231.136	686.400
7	México	Guadalajara	1157.505	4456.120	1570.128	457.382
8	Monterrey	San Luis Potosí	1122.811	1122.811	4097.836	396.504
9	Guadalajara	México	1006.624	1461.144	6075.945	457.382
10	San Luis Potosí	Hermosillo	965.811	6825.153	2231.136	1262.000
11	México	Mérida	830.246	4456.120	830.246	994.268
12	Guadalajara	Monterrey	335.733	1461.144	1986.814	663.923
13	Culiacán	San Luis Potosí	269.115	269.115	4097.836	718.000
14	Hermosillo	San Luis Potosí	256.773	256.773	4097.836	1262.000
15	Cd. Juárez	Chihuahua	217.454	217.454	217.454	327.928
16	San Luis Potosí	Guadalajara	212.689	6825.153	1570.128	310.075
17	Chihuahua	Guadalajara	199.934	199.934	1570.128	919.130
18	México	Mazatlán	169.506	4456.120	169.506	847.362
19	Mazatlán	México	153.701	153.701	6075.945	847.362
20	Tijuana	San Luis Potosí	150.274	1415.599	4097.836	1956.000
21	Guadalajara	Acapulco	118.787	1461.144	118.787	555.294
22	San Luis Potosí	Tijuana	111.485	6825.153	111.485	1956.000

Cuadro A1.3
Red de carga nacional regular y de fletamento para el año 2003

	NODO ORIGEN	NODO DESTINO	FLUJO O – D (ton)	CARGA GENERADA NODO ORIGEN (ton)	CARGA ATRAÍDA NODO DESTINO (ton)	LONGITUD DEL ARCO (km)
1	México	Guadalajara	8079.669	49415.889	13080.487	457.382
2	Guadalajara	México	6848.763	11936.744	30586.282	457.382
3	México	Monterrey	4651.999	49415.889	9863.963	705.892
4	Mérida	México	4243.338	4243.338	30586.282	994.268
5	México	Mérida	3944.809	49415.889	3944.809	994.268
6	México	Tijuana	3854.633	49415.889	7890.703	2294.938
7	México	Cancún	3620.053	49415.889	3620.053	1280.055
8	Tijuana	México	3536.382	7835.319	30586.282	2294.938
9	Monterrey	Guadalajara	3256.647	8638.386	13080.487	663.923
10	Monterrey	México	3123.538	8638.386	30586.282	705.892
11	Guadalajara	Monterrey	2893.020	11936.744	9863.963	663.923
12	San Luis Potosí	México	2602.913	6940.747	30586.282	365.826
13	México	San Luis Potosí	2425.756	49415.889	4374.264	365.826
14	México	Villahermosa	1810.332	49415.889	1810.332	677.094
15	San Luis Potosí	Monterrey	1666.784	6940.747	9863.963	396.504
16	México	Chihuahua	1398.124	49415.889	1929.472	1237.682
17	Tijuana	Hermosillo	1362.388	7835.319	4249.186	686.400
18	San Luis Potosí	Culiacán	1289.766	6940.747	2365.230	718.000
19	México	San José del Cabo	1233.980	49415.889	1913.805	1180.420
20	México	Hermosillo	1232.628	49415.889	4249.186	1609.601
21	México	Tuxtla Gutiérrez	1215.371	49415.889	1215.371	672.495
22	Monterrey	San Luis Potosí	1178.023	8638.386	4374.264	396.504
23	México	Mexicali	1145.736	49415.889	1442.682	2171.046
24	Cancún	México	1136.045	1136.045	30586.282	1280.055
25	México	Pto. Vallarta	1114.608	49415.889	1114.608	658.677
26	México	Veracruz	1075.102	49415.889	1075.102	304.054
27	México	Acapulco	1048.906	49415.889	1048.906	305.799
28	Guadalajara	Tijuana	1023.555	11936.744	7890.703	1897.112
29	Tijuana	Guadalajara	998.662	7835.319	13080.487	1897.112
30	México	Cd. Juárez	969.026	49415.889	1364.525	1534.566
31	San Luis Potosí	Hermosillo	965.811	6940.747	4249.186	1262.000
32	México	Del Bajío	939.853	49415.889	1164.113	302.748
33	México	Oaxaca	890.218	49415.889	910.324	363.880
34	México	Culiacán	884.409	49415.889	2365.230	1043.662
35	Tapachula	México	747.395	747.395	30586.282	879.951
36	México	Tampico	736.067	49415.889	736.067	338.523
37	Chihuahua	México	683.728	1074.677	30586.282	1237.682

	NODO ORIGEN	NODO DESTINO	FLUJO O – D (ton)	CARGA GENERADA NODO ORIGEN (ton)	CARGA ATRAÍDA NODO DESTINO (ton)	LONGITUD DEL ARCO (km)
38	México	Mazatlán	675.534	49415.889	764.751	847.362
39	Oaxaca	Tijuana	624.314	1187.692	7890.703	2657.603
40	Villahermosa	México	615.093	615.093	30586.282	677.094
41	Oaxaca	México	563.378	1187.692	30586.282	363.880
42	México	Zihuatanejo	559.441	49415.889	559.441	324.108
43	México	Aguascalientes	516.294	49415.889	743.188	419.926
44	México	Tapachula	511.064	49415.889	511.064	879.951
45	Culiacán	México	503.135	901.542	30586.282	1043.662
46	México	Torreón	495.476	49415.889	495.476	808.353
47	Monterrey	Tijuana	487.778	8638.386	7890.703	1801.903
48	Cd. Juárez	México	480.167	937.115	30586.282	1534.566
49	México	Ciudad del Carmen	465.551	49415.889	465.551	767.895
50	Mazatlán	México	454.207	1009.340	30586.282	847.362
51	México	Minatitlán	445.960	49415.889	445.960	495.864
52	La Paz	México	444.334	811.596	30586.282	1268.932
53	Hermosillo	México	417.114	1215.943	30586.282	1609.601
54	Del Bajío	México	409.838	686.472	30586.282	302.748
55	México	Bahías de Huatulco	386.180	49415.889	386.180	503.981
56	México	La Paz	382.580	49415.889	592.832	1268.932
57	Monterrey	Hermosillo	381.457	8638.386	4249.186	1137.922
58	Cuernavaca	Tijuana	376.942	376.942	7890.703	2326.400
59	Tijuana	Monterrey	376.330	7835.319	9863.963	1801.903
60	Nuevo Laredo	México	368.282	368.282	30586.282	883.318
61	La Paz	Tijuana	367.262	811.596	7890.703	1137.535
62	México	Chetumal	359.650	49415.889	359.650	1114.211
63	Mazatlán	San José del Cabo	357.033	1009.340	1913.805	365.920
64	México	Reynosa	351.126	49415.889	351.126	735.295
65	Mexicali	México	334.287	419.782	30586.282	2171.046
66	Guadalajara	San José del Cabo	322.792	11936.744	1913.805	726.662
67	Cd. Juárez	Chihuahua	320.405	937.115	1929.472	327.928
68	Tijuana	Cuernavaca	317.537	7835.319	317.537	2326.400
69	Guadalajara	Hermosillo	306.902	11936.744	4249.186	
70	San Luis Potosí	Guadalajara	303.988	6940.747	13080.487	310.075
71	Guadalajara	Mexicali	296.946	11936.744	1442.682	
72	México	Ciudad Obregón	292.958	49415.889	292.958	1402.611
73	México	Matamoros	289.537	49415.889	289.537	715.708
	Reynosa	México	289.098	289.098	30586.282	735.295
	Del Bajío	Tijuana	276.634	686.472	7890.703	1995.370
76	Matamoros	México	273.208	273.208	30586.282	715.708
77	Culiacán	San Luis Potosí	269.115		4374.264	

	NODO ORIGEN	NODO DESTINO	FLUJO O – D (ton)	CARGA GENERADA NODO ORIGEN (ton)	CARGA ATRAÍDA NODO DESTINO (ton)	LONGITUD DEL ARCO (km)
78	Los Mochis	México	264.468	264.468	30586.282	1234.343
79	Hermosillo	San Luis Potosí	256.773	1215.943	4374.264	1262.000
80	Hermosillo	Tijuana	248.297	1215.943	7890.703	686.400
81	Chihuahua	Cd. Juárez	245.056	1074.677	1364.525	327.928
82	México	Los Mochis	237.385	49415.889	237.385	1234.343
83	México	Durango	236.415	49415.889	236.415	764.588
84	Torreón	México	235.429	235.429	30586.282	808.353
85	México	Ciudad Victoria	234.879	49415.889	234.879	470.327
86	Tijuana	Aguascalientes	226.894	7835.319	743.188	1877.320
87	Tuxtla Gutiérrez	México	225.629	225.629	30586.282	672.495
88	Tijuana	Del Bajío	224.260	7835.319	1164.113	1995.370
89	Pto. Vallarta	México	221.798	221.798	30586.282	658.677
90	México	Zacatecas	219.562	49415.889	219.562	534.567
91	Monterrey	Chihuahua	210.943	8638.386	1929.472	663.790
92	Tijuana	La Paz	210.252	7835.319	592.832	1137.535
93	Ciudad Obregón	México	206.220	206.220	30586.282	1402.611
94	México	Manzanillo	205.313	49415.889	205.313	575.718
95	México	Saltillo	198.121	49415.889	198.121	671.941
96	Mazatlán	Tijuana	198.100	1009.340	7890.703	1477.936
97	Tijuana	Culiacán	191.055	7835.319	2365.230	1264.012
98	Tijuana	Morelia	173.260	7835.319	173.260	2116.846
99	Acapulco	México	172.563	172.563	30586.282	305.799
100	Veracruz	México	171.051	171.051	30586.282	304.054
101	Hermosillo	Guadalajara	163.822	1215.943	13080.487	1223.510
102	Guadalajara	Cd. Juárez	150.443	11936.744	1364.525	1266.580
103	Tijuana	San Luis Potosí	150.274	7835.319	4374.264	1956.000
104	Chihuahua	Monterrey	145.893	1074.677	9863.963	663.790
105	Morelia	Tijuana	141.777	141.777	7890.703	2116.846
106	Cd. Juárez	Guadalajara	136.543	937.115	13080.487	1266.580
107	San José del Cabo	México	130.199	227.158	30586.282	1180.420
108	Hermosillo	Monterrey	129.937	1215.943	9863.963	1137.922
109	Culiacán	Tijuana	129.292	901.542	7890.703	1264.012
110	Tampico	México	120.912	120.912	30586.282	338.523
111	Ciudad del Carmen	México	117.419	117.419	30586.282	767.895
112	San Luis Potosí	Tijuana	111.485	6940.747	7890.703	1956.000
113	Saltillo	México	101.026	101.026	30586.282	671.941
114	Bahías de Huatulco	México	96.398	96.398	30586.282	503.981
115	Guadalajara	San Luis Potosí	94.323	11936.744	4374.264	310.075
116	Mexicali	Guadalajara	85.495	419.782	13080.487	1786.657
117	México	Nuevo Laredo	81.584	49415.889	81.584	883.318

	NODO ORIGEN	NODO DESTINO	FLUJO O – D (ton)	CARGA GENERADA NODO ORIGEN (ton)	CARGA ATRAÍDA NODO DESTINO (ton)	LONGITUD DEL ARCO (km)
118	Minatitlán	México	77.825	77.825	30586.282	495.864
119	Manzanillo	México	76.535	76.535	30586.282	575.718
120	Aguascalientes	México	74.518	125.152	30586.282	419.926
121	Chetumal	México	60.189	60.189	30586.282	1114.211
122	San José del Cabo	Guadalajara	55.661	227.158	13080.487	726.662
123	Zihuatanejo	México	53.636	53.636	30586.282	324.108
124	Aguascalientes	Tijuana	50.634	125.152	7890.703	1877.320
125	Tijuana	Mazatlán	47.919	7835.319	764.751	1477.936
126	San José del Cabo	Mazatlán	41.298	227.158	764.751	365.920
127	Durango	México	37.246	37.246	30586.282	764.588
128	Zacatecas	México	35.197	35.197	30586.282	534.567
129	Ciudad Victoria	México	33.781	33.781	30586.282	470.327
130	Tijuana	Oaxaca	20.106	7835.319	910.324	2657.603

Anexo 2. Arcos de las redes de transporte aéreo de carga internacional en México

Cuadro A2.1

Red de carga internacional regular para el año 2003

	NODO ORIGEN	NODO DESTINO	FLUJO O-D (ton)	CARGA GENERADA NODO ORIGEN (ton)	CARGA ATRAÍDA NODO DESTINO (ton)	LONGITUD DEL ARCO (km)
1	Ámsterdam	México	20603.414	22148.827	123095.375	9218
2	Guadalajara	Memphis	15461.607	29688.991	29645.319	2078
3	París	México	13956.167	13956.167	123095.375	9204
4	Los Ángeles	México	13742.405	23092.369	123095.375	2503
5	Memphis	Toluca	13018.074	27501.065	13018.074	1996
6	Luxemburgo	México	12937.300	16098.969	123095.375	9428
7	Memphis	Guadalajara	11267.314	27501.065	31492.552	2078
8	Toluca	Memphis	9852.288	9852.288	29645.319	1996
9	Mexico	Los Ángeles	9839.142	69186.722	16168.823	2503
10	Los Ángeles	Guadalajara	8816.680	23092.369	31492.552	2107
11	Madrid	México	8410.792	8410.792	123095.375	9077
12	Sao Paulo	México	8392.531	8392.531	123095.375	7442
13	México	Ámsterdam	7541.467	69186.722	8244.930	9218
14	Miami	México	7458.005	9719.819	123095.375	2054
15	México	París	6481.550	69186.722	6481.550	9204
16	México	Houston	6787.504	69186.722	6787.504	1234
17	México	Miami	5600.105	69186.722	9938.800	2054
18	Santiago de Chile	México	5108.799	5108.799	123095.375	6603
19	Guadalajara	Los Ángeles	4757.293	29688.991	16168.823	2107
	Louisville	México	4608.149	4608.149	123095.375	2453
21	Cincinnati	México	4525.798	6346.588	123095.375	2585
22	Mérida	Miami	4338.695	4338.695	9938.800	1099
23	Monterrey	Memphis	4331.424	10959.371	29645.319	1419
24	Monterrey	Dayton	4083.378	10959.371	5132.505	2158
25	Guatemala	México	3780.935	3780.935	123095.375	1055
26	Frankfurt	México	3765.868	3765.868	123095.375	9563
	Dayton	Monterrey	3738.121	5161.133	9406.775	
28	México	Bogotá	3359.364	69186.722	3904.881	3163
	Bogotá	México	3346.327		123095.375	
	México	Guatemala	3333.857	69186.722	3333.857	1055
	San Antonio	Guadalajara	3329.416		31492.552	

	NODO ORIGEN	NODO DESTINO	FLUJO O-D (ton)	CARGA GENERADA NODO ORIGEN (ton)	CARGA ATRAÍDA NODO DESTINO (ton)	LONGITUD DEL ARCO (km)
32	México	New York	3294.625	69186.722	3294.625	3346
33	Memphis	Monterrey	3215.677	27501.065	9406.775	1419
34	México	Cincinnati	3202.715	69186.722	5298.861	2585
35	Luxemburgo	Guadalajara	3161.669	16098.969	31492.552	9608
36	Guadalajara	Louisville	3065.370	29688.991	3065.370	2591
37	México	Luxemburgo	2871.577	69186.722	4882.045	9428
38	Monterrey	Austin	2544.569	10959.371	2544.569	550
39	Austin	Monterrey	2452.977	2452.977	9406.775	550
40	Chicago	México	2255.032	2255.032	123095.375	2722
41	Guadalajara	Cincinnati	2096.146	29688.991	5298.861	2725
42	México	Santiago de Chile	2087.348	69186.722	2087.348	6603
43	Guadalajara	Luxemburgo	2010.468	29688.991	4882.045	9608
44	México	Frankfurt	1878.344	69186.722	1878.344	9563
45	Cincinnati	Guadalajara	1820.790	6346.588	31492.552	2725
46	San José, Costa Rica	México	1781.701	2430.269	123095.375	1921
47	México	Sao Paulo	1662.182	69186.722	1662.182	7442
48	México	Chicago	1638.464	69186.722	1638.464	2722
49	México	San José, Costa Rica	1629.540	69186.722	1629.540	1921
50	Ámsterdam	Guadalajara	1545.413	22148.827	31492.552	9381
51	Londres	México	1472.940	1472.940	123095.375	8914
52	Miami	Mérida	1369.352	9719.819	1369.352	1099
53	México	Londres	1322.072	69186.722	1322.072	8914
54	Atlanta	México	1162.647	1162.647	123095.375	2146
55	Guadalajara	Dayton	1049.127	29688.991	5132.505	2819
56	Houston	México	1017.862	1017.862	123095.375	1234
57	México	Atlanta	957.756	69186.722	957.756	2146
58	Santa Cruz	México	955.795	955.795	123095.375	5708
59	México	Dallas	943.780	69186.722	943.780	1511
60	Dayton	Guadalajara	902.702	5161.133	31492.552	2819
61	Miami	Cancún	892.462	9719.819	892.462	857
62	Lima	México	876.441	876.441	123095.375	4243
63	México	Tokio	846.592	69186.722	846.592	11326
64	San José del Cabo	Los Ángeles	800.048	800.048	16168.823	1469
65	México	Madrid	796.632	69186.722	796.632	9077
66	Pto. Vallarta	Los Ángeles	772.340	772.340	16168.823	1967
67	México	Quito	712.778	69186.722	712.778	3129
68	Guadalajara	Ámsterdam	703.463	29688.991	8244.930	9381
69	Río de Janeiro	México	682.886	682.886	123095.375	7675
70	México	Toronto	661.975	69186.722	661.975	3259
71	San José, Costa Rica	Guadalajara	648.568	2430.269	31492.552	2368

	NODO ORIGEN	NODO DESTINO	FLUJO O-D (ton)	CARGA GENERADA NODO ORIGEN (ton)	CARGA ATRAÍDA NODO DESTINO (ton)	LONGITUD DEL ARCO (km)
72	New York	México	622.708	622.708	123095.375	3346
73	México	Panamá	622.128	69186.722	622.128	2406
74	México	San Francisco	593.495	69186.722	593.495	3032
75	Toronto	México	570.350	570.350	123095.375	3259
76	Guadalajara	Bogotá	545.517	29688.991	3904.881	3614
77	Dallas	México	540.213	540.213	123095.375	1511
78	Los Ángeles	Mazatlán	533.284	23092.369	533.284	1685
79	México	La Habana	521.730	69186.722	521.730	1774
80	Dayton	México	520.310	5161.133	123095.375	2686

Cuadro A2.2

Red de carga internacional de servicio de fletamento para el año 2003

	NODO ORIGEN	NODO DESTINO	FLUJO O-D (ton)	CARGA GENERADA NODO ORIGEN (ton)	CARGA ATRAÍDA NODO DESTINO (ton)	LONGITUD DEL ARCO (km)
1	Luxemburgo	México	12872.770	14693.051	20736.055	9428
2	Guadalajara	Luxemburgo	4652.092	12398.557	8920.581	9608
3	México	Luxemburgo	4268.489	9473.135	8920.581	9428
4	Los Ángeles	México	3409.532	5172.784	20736.055	2503
5	Mérida	Miami	3046.850	3046.850	5980.494	1099
6	Miami	México	2853.524	5676.635	20736.055	2054
7	Miami	Mérida	2514.947	5676.635	2514.947	1099
8	México	Miami	2154.665	9473.135	5980.494	2054
9	Guayaquil	Guadalajara	2140.953	2140.953	10495.009	3593
10	Guadalajara	Austin	2129.273	12398.557	2129.273	1220
11	Guadalajara	Toledo	1929.704	12398.557	3005.010	3000
12	Austin	Guadalajara	1878.229	1878.229	10495.009	1220
13	Luxemburgo	Guadalajara	1820.281	14693.051	10495.009	9608
14	Los Ángeles	Guadalajara	1763.252	5172.784	10495.009	2107
15	Guadalajara	Los Ángeles	1635.332	12398.557	2863.502	2107
16	México	Bogotá	1155.049	9473.135	1155.049	3163
17	Monterrey	Toledo	1075.306	1480.115	3005.010	2334
18	Toledo	Guadalajara	976.185	2448.920	10495.009	3000
19	México	Los Ángeles	819.469	9473.135	2863.502	2503
20	Toledo	Saltillo	790.882	2448.920	888.995	2417
21	Toledo	Monterrey	681.853	2448.920	1580.709	2334
22	Guadalajara	Miami	663.345	12398.557	5980.494	2425
23	Huntsville	Guadalajara	625.633	625.633	10495.009	2258
24	San Antonio	Monterrey	563.711	563.711	1580.709	445
25	Guadalajara	Bangor	452.000	12398.557	452.000	4163
26	Sao Paulo	México	424.391	747.613	20736.055	7442
27	Guadalajara	Houston	406.000	12398.557	501.000	1323
28	La Habana	México	362.890	362.890	20736.055	1774
29	Rickenbacker apt - Columbus	Guadalajara	351.900	351.900	10495.009	2910
30	Guadalajara	Louisville	344.553	12398.557	344.553	2591
31	Guatemala	México	322.990	322.990	20736.055	1055
32	México	Guayaquil	302.202	9473.135	302.202	3190
33	Monterrey	Huntsville	293.864	1480.115	396.581	1620
	México	La Habana	279.600	9473.135	279.600	1774
	Houston	Guadalajara	262.200	262.200	10495.009	
	Dallas	Guadalajara	244.877	342.990	10495.009	

	NODO ORIGEN	NODO DESTINO	FLUJO O-D (ton)	CARGA GENERADA NODO ORIGEN (ton)	CARGA ATRAÍDA NODO DESTINO (ton)	LONGITUD DEL ARCO (km)
37	Atlanta	Monterrey	230.000	230.000	1580.709	1752
38	Saltillo	Laredo	218.394	218.394	218.394	281
39	Miami	Cancún	215.629	5676.635	215.629	857
40	México	Guatemala	206.543	9473.135	206.543	1055
41	Memphis	San José del Cabo	200.000	200.000	295.000	2326
43	Manaus	México	161.611	323.222	20736.055	4947
46	Indianápolis	Guadalajara	158.300	158.300	10495.009	2683
47	Bangor	México	148.800	148.800	20736.055	3970
48	Cancún	Miami	115.634	115.634	5980.494	857
49	Monterrey	Sao Paulo	110.945	1480.115	213.858	7976
50	Laredo	Monterrey	105.145	105.145	1580.709	203
51	México	Sao Paulo	102.913	9473.135	213.858	7442
52	Guadalajara	Huntsville	102.717	12398.557	396.581	2258
53	México	Panamá	99.097	9473.135	99.097	2406
54	Dallas	Saltillo	98.113	342.990	888.995	916
55	Panamá	México	96.113	96.113	20736.055	2406
56	San José del Cabo	Houston	95.000	95.000	501.000	1626
57	San Salvador	San José del Cabo	95.000	95.000	295.000	2414
58	Miami	Guadalajara	92.535	5676.635	10495.009	2425
59	Fort Bliss, USA	Guadalajara	90.332	175.295	10495.009	1292
60	Gander	Guadalajara	90.332	90.332	10495.009	5336
61	Tijuana	Los Ángeles	85.479	85.479	2863.502	208
62	México	San Juan, Puerto Rico	85.108	9473.135	85.108	3478
63	El Paso	Cd. Juárez	84.963	175.295	84.963	19.4
64	Guadalajara	Memphis	83.541	12398.557	83.541	2078
65	Huntsville	México	83.434	709.067	20736.055	2083
66	Acapulco	Panamá	80.522	80.522	179.619	2358
67	Chihuahua	El Paso	79.907	79.907	79.907	347

Cuadro A2.3

Red de carga internacional regular y de fletamento para el año 2003

	NODO ORIGEN	NODO DESTINO	FLUJO O-D (ton)	CARGA GENERADA NODO ORIGEN (ton)	CARGA ATRAÍDA NODO DESTINO (ton)	LONGITUD DEL ARCO (km)
1	Luxemburgo	México	25810.070	30792.020	143976.196	9428
2	Ámsterdam	México	20603.414	22148.827	143976.196	9218
3	Los Ángeles	México	17151.937	28265.153	143976.196	2503
4	Guadalajara	Memphis	15545.148	42902.433	29744.794	2078
5	París	México	13956.167	13956.167	143976.196	9204
6	Memphis	Toluca	13018.074	27501.065	13018.074	1996
7	Memphis	Guadalajara	11267.314	27501.065	41509.701	2078
8	México	Los Ángeles	10658.611	79805.895	18623.624	2503
9	Los Ángeles	Guadalajara	10579.932	28265.153	41509.701	2107
10	Miami	México	10311.529	15303.919	143976.196	2054
11	Toluca	Memphis	9852.288	9852.288	29744.794	1996
12	Sao Paulo	México	8816.922	8816.922	143976.196	7442
13	Madrid	México	8410.792	8410.792	143976.196	9077
14	México	Miami	7754.770	79805.895	16119.699	2054
15	México	Ámsterdam	7541.467	79805.895	8244.930	9218
16	Mérida	Miami	7385.545	7385.545	16119.699	1099
17	México	Luxemburgo	7140.066	79805.895	13802.626	9428
18	Guadalajara	Luxemburgo	6662.560	42902.433	13802.626	9608
19	México	París	6481.550	79805.895	6481.550	9204
20	Guadalajara	Los Ángeles	6392.625	42902.433	18623.624	2107
21	México	Houston	6787.504	79805.895	7281.397	1234
22	Santiago de Chile	México	5108.799	5108.799	143976.196	6603
23	Luxemburgo	Guadalajara	4981.950	30792.020	41509.701	9608
24	Louisville	México	4608.149	4608.149	143976.196	2453
25	Cincinnati	México	4525.798	6346.588	143976.196	2585
26	México	Bogotá	4514.413	79805.895	5059.930	3163
27	Monterrey	Memphis	4347.358	12050.611	29744.794	1419
28	Guatemala	México	4103.925	4103.925	143976.196	1055
29	Monterrey	Dayton	4083.378	12050.611	5625.706	2158
30	Miami	Mérida	3884.299	15303.919	3884.299	1099
31	Frankfurt	México	3765.868	3765.868	143976.196	9563
32	Dayton	Monterrey	3747.406	5170.418	10674.379	2158
33	México	Guatemala	3540.400	79805.895	3540.400	1055
34	Guadalajara	Louisville	3409.923		3409.923	2591
1	Bogotá	México	3346.327		143976.196	3163
	San Antonio	Guadalajara	3336.266		41509.701	1114
1	México	New York	3294.625		3294.625	

	NODO ORIGEN	NODO DESTINO	FLUJO O-D (ton)	CARGA GENERADA NODO ORIGEN (ton)	CARGA ATRAÍDA NODO DESTINO (ton)	LONGITUD DEL ARCO (km)
38	Memphis	Monterrey	3215.677	27501.065	10674.379	1419
39	México	Cincinnati	3202.715	79805.895	5298.861	2585
40	Monterrey	Austin	2544.569	12050.611	4673.842	550
41	Austin	Monterrey	2452.977	4331.206	10674.379	550
42	Chicago	México	2255.032	2255.032	143976.196	2722
43	Guayaquil	Guadalajara	2140.953	2140.953	41509.701	3593
44	Guadalajara	Austin	2129.273	42902.433	4673.842	1220
45	Guadalajara	Cincinnati	2096.146	42902.433	5298.861	2725
46	México	Santiago de Chile	2087.348	79805.895	2087.348	6603
47	Guadalajara	Toledo	1929.704	42902.433	3005.010	3000
48	México	Frankfurt	1878.344	79805.895	1878.344	9563
49	Austin	Guadalajara	1878.229	4331.206	41509.701	1220
50	Cincinnati	Guadalajara	1820.790	6346.588	41509.701	2725
51	San José, Costa Rica	México	1781.701	2431.574	143976.196	1921
52	México	Sao Paulo	1765.095	79805.895	2278.765	7442
53	México	San José, Costa Rica	1653.700	79805.895	1653.700	1921
54	México	Chicago	1638.464	79805.895	1638.464	2722
55	Ámsterdam	Guadalajara	1545.413	22148.827	41509.701	9381
56	Londres	México	1472.940	1472.940	143976.196	8914
57	México	Londres	1322.072	79805.895	1322.072	8914
58	Atlanta	México	1162.647	1162.647	143976.196	2146
59	Miami	Cancún	1108.091	15303.919	1108.091	857
60	Monterrey	Toledo	1075.306	12050.611	3005.010	2334
61	Guadalajara	Dayton	1049.127	42902.433	5625.706	2819
62	Houston	México	1017.862	1017.862	143976.196	1234
63	Guadalajara	Miami	979.384	42902.433	16119.699	2425
	Toledo	Guadalajara	976.185	2448.920	41509.701	3000
65	México	Atlanta	957.756	79805.895	957.756	2146
66	Santa Cruz	México	955.795	955.795	143976.196	5708
67	México	Dallas	948.752	79805.895	948.752	1511
68	Dayton	Guadalajara	902.702	5170.418	41509.701	2819
69	Lima	México	876.441	876.441	143976.196	4243
	Huntsville	Guadalajara	858.559		41509.701	2258
	México	Tokio	846.592		846.592	11326
	México	La Habana	801.330		801.330	1774
	San José del Cabo	Los Ángeles	800.048		18623.624	1469
	México	Madrid	796.632		796.632	9077
	Toledo	Saltillo	790.882		790.882	2417
	Pto. Vallarta	Los Ángeles	772.340		18623.624	1967
	México	Quito	744.442		744.442	3129

	NODO ORIGEN	NODO DESTINO	FLUJO O-D (ton)	CARGA GENERADA NODO ORIGEN (ton)	CARGA ATRAÍDA NODO DESTINO (ton)	LONGITUD DEL ARCO (km)
78	México	Panamá	721.225	79805.895	721.225	2406
79	Guadalajara	Ámsterdam	703.463	42902.433	8244.930	9381
80	Río de Janeiro	México	682.886	682.886	143976.196	7675
81	Toledo	Monterrey	681.853	2448.920	10674.379	2334
82	México	Toronto	663.098	79805.895	663.098	3259
83	San José, Costa Rica	Guadalajara	649.873	2431.574	41509.701	2368
84	New York	México	622.708	622.708	143976.196	3346
85	México	San Francisco	593.495	79805.895	593.495	3032
86	San Antonio	Monterrey	576.466	3912.732	10674.379	445
87	Toronto	México	571.614	571.614	143976.196	3259
88	Dallas	Guadalajara	571.535	1131.440	41509.701	1510
89	Dallas	México	559.905	1131.440	143976.196	1511
90	Guadalajara	Bogotá	545.517	42902.433	5059.930	3614
91	Los Ángeles	Mazatlán	533.284	28265.153	533.284	1685
92	Dayton	México	520.310	5170.418	143976.196	2686
93	México	San Salvador	513.711	79805.895	513.711	1240
94	Guadalajara	Sao Paulo	513.670	42902.433	2278.765	7870
95	Guadalajara	Houston	493.893	42902.433	7281.397	1323
96	México	Dayton	493.201	79805.895	5625.706	2686
97	La Habana	México	490.328	490.328	143976.196	1774
98	Panamá	México	486.330	486.330	143976.196	2406
99	México	Santa Cruz	464.517	79805.895	464.517	5708
100	Guadalajara	Bangor	452.000	42902.433	452.000	4163

Anexo 3. Arcos de las redes de transporte aéreo de carga doméstica e internacional en México

Cuadro A3.1

Red de carga regular nacional e internacional para el año 2003

_			1	-		
	NODO ORIGEN	NODO DESTINO	FLUJO O-D (ton)	CARGA GENERADA NODO ORIGEN (ton)	CARGA ATRAÍDA NODO DESTINO (ton)	LONGITUD DEL ARCO (km)
1	Ámsterdam	México	20603.414	22148.827	145551.097	9218.000
2	Guadalajara	Memphis	15461.607	41745.862	29645.319	2078.000
3	París	México	13956.167	13956.167	145551.097	9204.000
4	Los Ángeles	México	13742.405	23092.369	145551.097	2503.000
5	Memphis	Toluca	13018.074	27501.065	13018.074	1996.000
6	Luxemburgo	México	12937.300	16098.969	145551.097	9428.000
7	Memphis	Guadalajara	11267.314	27501.065	43423.574	2078.000
8	Toluca	Memphis	9852.288	9852.288	29645.319	1996.000
9	México	Los Ángeles	9839.142	115251.142	16168.823	2503.000
10	Los Ángeles	Guadalajara	8816.680	23092.369	43423.574	2107.000
11	Madrid	México	8410.792	8410.792	145551.097	9077.000
12	Sao Paulo	México	8392.531	8392.531	145551.097	7442.000
13	México	Ámsterdam	7541.467	115251.142	8244.930	9218.000
14	Miami	México	7458.005	9719.819	145551.097	2054.000
15	México	Guadalajara	6922.164	115251.142	43423.574	457.382
16	México	París	6481.550	115251.142	6481.550	9204.000
17	Guadalajara	México	5842.139	41745.862	145551.097	457.382
18	México	Houston	5751.967	115251.142	7079.311	1234.000
19	México	Miami	5600.105	115251.142	10254.839	2054.000
20	Santiago de Chile	México	5108.799	5108.799	145551.097	6603.000
21	Guadalajara	Los Ángeles	4757.293	41745.862	16168.823	2107.000
22	México	Monterrey	4631.696	115251.142	16972.088	705.892
23	Louisville	México	4608.149	5035.790	145551.097	2453.000
24	Cincinnati	México	4525.798	6346.588	145551.097	2585.000
25	Mérida	Miami	4338.695	6552.541	10254.839	1099.000
26	Monterrey	Memphis	4331.424	18180.491	29645.319	1419.000
27	Monterrey	Dayton	4083.378	18180.491	5625.706	2158.000
28	México	Tijuana	3854.633	115251.142	7007.209	2294.938
29	Guatemala	México	3780.935	3780.935	145551.097	1055.000
30	Frankfurt	México	3765.868	3765.868	145551.097	9563.000
31	Dayton	Monterrey	3738.121	5161.133	16972.088	2158.000

	NODO ORIGEN	NODO DESTINO	FLUJO O-D (ton)	CARGA GENERADA NODO ORIGEN (ton)	CARGA ATRAÍDA NODO DESTINO (ton)	LONGITUD DEL ARCO (km)
32	México	Cancún	3599.624	115251.142	4492.086	1280.055
33	Tijuana	México	3526.947	5219.476	145551.097	2294.938
34	México	Bogotá	3359.364	115251.142	3904.881	3163.000
35	Bogotá	México	3346.327	3346.327	145551.097	3163.000
36	México	Guatemala	3333.857	115251.142	3333.857	1055.000
37	San Antonio	Guadalajara	3329.416	3329.416	43423.574	1114.000
38	México	New York	3294.625	115251.142	3691.031	3346.000
39	Monterrey	Guadalajara	3255.897	18180.491	43423.574	663.923
40	Memphis	Monterrey	3215.677	27501.065	16972.088	1419.000
41	México	Cincinnati	3202.715	115251.142	5298.861	2585.000
42	Luxemburgo	Guadalajara	3161.669	16098.969	43423.574	9608.000
43	México	Mérida	3114.563	115251.142	4483.915	994.268
44	Monterrey	México	3100.147	18180.491	145551.097	705.892
45	Guadalajara	Louisville	3065.370	41745.862	3065.370	2591.000
46	México	Luxemburgo	2871.577	115251.142	4882.045	9428.000
47	Guadalajara	Monterrey	2557.287	41745.862	16972.088	663.923
48	Monterrey	Austin	2544.569	18180.491	2544.569	550.000
49	Austin	Monterrey	2452.977	2452.977	16972.088	550.000
50	Chicago	México	2255.032	2255.032	145551.097	2722.000
51	Guadalajara	Cincinnati	2096.146	41745.862	5298.861	2725.000
52	México	Santiago de Chile	2087.348	115251.142	2087.348	6603.000
53	Guadalajara	Luxemburgo	2010.468	41745.862	4882.045	9608.000
54	Mérida	México	1922.039	6552.541	145551.097	994.268
55	México	Frankfurt	1878.344	115251.142	1878.344	9563.000
56	Cincinnati	Guadalajara	1820.790	6346.588	43423.574	2725.000
57	México	Villahermosa	1810.332	115251.142	1810.332	677.094
	San José, Costa Rica	México	1781.701	2430.269	145551.097	1921.000
59	México	Sao Paulo	1662.182	115251.142	2175.852	7442.000
60	México	Chicago	1638.464	115251.142	1638.464	2722.000
61	Mexico	San José, Costa Rica	1629.540	115251.142	1629.540	1921.000
62	Ámsterdam	Guadalajara	1545.413	22148.827	43423.574	9381.000
63	Londres	México	1472.940	1472.940	145551.097	8914.000
64	México	Chihuahua	1397.124	115251.142	1397.124	1237.682
65	Miami	Mérida	1369.352	9719.819	4483.915	1099.000
66	México	Londres	1322.072	115251.142	1322.072	8914.000
67	México	Hermosillo	1232.328	115251.142	1895.352	1609.601
68	México	San José del Cabo	1228.329	115251.142	1908.154	1180.420
69	México	Tuxtla Gutiérrez	1215.371	115251.142	1215.371	672.495
70	Atlanta	México	1162.647	1162.647	145551.097	2146.000

	NODO ORIGEN	NODO DESTINO	FLUJO O-D (ton)	CARGA GENERADA NODO ORIGEN (ton)	CARGA ATRAÍDA NODO DESTINO (ton)	LONGITUD DEL ARCO (km)
71	México	Mexicali	1145.736	115251.142	1442.274	2171.046
72	Cancún	México	1118.554	1514.960	145551.097	1280.055
73	México	Pto. Vallarta	1110.880	115251.142	1110.880	658.677
74	México	Veracruz	1074.591	115251.142	1074.591	304.054
75	Guadalajara	Dayton	1049.127	41745.862	5625.706	2819.000
76	México	Acapulco	1048.331	115251.142	1048.331	305.799
77	México	Houston	1035.537	115251.142	7079.311	1234.000
78	Guadalajara	Tijuana	1023.555	41745.862	7007.209	1897.112
79	Houston	México	1017.862	1017.862	145551.097	1234.000
80	Tijuana	Guadalajara	998.662	5219.476	43423.574	1897.112
81	México	Cd. Juárez	969.026	115251.142	969.026	1534.566
82	México	Atlanta	957.756	115251.142	957.756	2146.000
83	Santa Cruz	México	955.795	955.795	145551.097	5708.000
84	México	Dallas	943.780	115251.142	943.780	1511.000
85	México	Del Bajío	939.603	115251.142	939.603	302.748
86	Dayton	Guadalajara	902.702	5161.133	43423.574	2819.000
87	Miami	Cancún	892.462	9719.819	4492.086	857.000
88	México	Oaxaca	890.218	115251.142	890.218	363.880
89	México	Culiacán	883.665	115251.142	883.665	1043.662
90	Lima	México	876.441	876.441	145551.097	4243.000
91	México	Tokio	846.592	115251.142	846.592	11326.000
92	San José del Cabo	Los Ángeles	800.048	1246.925	16168.823	1469.000
93	México	Madrid	796.632	115251.142	796.632	9077.000
94	Pto. Vallarta	Los Ángeles	772.340	772.340	16168.823	1967.000
95	Tapachula	México	747.395	747.395	145551.097	879.951
96	México	Tampico	736.067	115251.142	736.067	338.523
97	México	Quito	712.778	115251.142	712.778	3129.000
98	Guadalajara	Ámsterdam	703.463	41745.862	8244.930	9381.000
99	Chihuahua	México	683.133	683.133	145551.097	1237.682
100	Río de Janeiro	México	682.886	682.886	145551.097	7675.000
101	México	Toronto	661.975	115251.142	661.975	3259.000
102	San José, Costa Rica	Guadalajara	648.568	2430.269	43423.574	2368.000
103	Oaxaca	Tijuana	624.314	1187.692	7007.209	2657.603
104	New York	México	622.708	622.708	145551.097	3346.000
105	México	Panamá	622.128	115251.142	622.128	2406.000
106	Villahermosa	México	615.093	615.093	145551.097	677.094
107	México	San Francisco	593.495	115251.142	1040.372	3032.000
108	Toronto	México	570.350	570.350	145551.097	3259.000
109	Oaxaca	México	563.378	1187.692	145551.097	363.880

	NODO ORIGEN	NODO DESTINO	FLUJO O-D (ton)	CARGA GENERADA NODO ORIGEN (ton)	CARGA ATRAÍDA NODO DESTINO (ton)	LONGITUD DEL ARCO (km)
110	México	Zihuatanejo	556.572	115251.142	556.572	324.108
111	Guadalajara	Bogotá	545.517	41745.862	3904.881	3614.000
112	Dallas	México	540.213	866.871	145551.097	1511.000
113	Los Ángeles	Mazatlán	533.284	23092.369	1039.312	1685.000
114	México	La Habana	521.730	115251.142	521.730	1774.000
115	Dayton	México	520.310	5161.133	145551.097	2686.000
116	México	Aguascalientes	516.294	115251.142	516.294	419.926
117	México	San Salvador	513.711	115251.142	513.711	1239.000
118	Guadalajara	Sao Paulo	513.670	41745.862	2175.852	7870.000
119	México	Tapachula	511.064	115251.142	511.064	879.951
120	México	Mazatlán	506.028	115251.142	1039.312	847.362
121	Culiacán	México	502.757	502.757	145551.097	1043.662
122	México	Torreón	495.476	115251.142	495.476	808.353
123	México	Dayton	493.201	115251.142	5625.706	2686.000
124	Monterrey	Tijuana	483.869	18180.491	7007.209	1801.903
125	Cd. Juárez	México	480.167	480.167	145551.097	1534.566
126	México	Ciudad del Carmen	465.551	115251.142	465.551	767.895
127	México	Santa Cruz	464.517	115251.142	464.517	5708.000
128	San José del Cabo	San Francisco	446.877	1246.925	1040.372	2012.000
129	México	Minatitlán	445.960	115251.142	445.960	495.864
130	La Paz	México	444.334	811.596	145551.097	1268.932
131	Louisville	Guadalajara	427.641	5035.790	43423.574	2591.000
132	Hermosillo	México	417.114	417.114	145551.097	1609.601
133	Del Bajío	México	409.338	685.972	145551.097	302.748
134	Tokio	México	400.797	400.797	145551.097	11326.000
135	Cancún	New York	396.406	1514.960	3691.031	2495.000
136	Panamá	México	390.217	390.217	145551.097	2406.000
137	Monterrey	Hermosillo	381.207	18180.491	1895.352	1137.922
138	Cuernavaca	Tijuana	376.942	376.942	7007.209	2326.400
139	Tijuana	Monterrey	376.330	5219.476	16972.088	1801.903
140	México	Bahías de Huatulco	369.452	115251.142	369.452	503.981
141	Nuevo Laredo	México	368.282	368.282	145551.097	883.318
142	La Paz	Tijuana	367.262	811.596	7007.209	1137.535
143	México	Chetumal	359.650	115251.142	359.650	1114.211
144	México	Caracas	358.974	115251.142	634.175	3601.000
145	México	La Paz	357.195	115251.142	357.195	1268.932
146	Mazatlán	San José del Cabo	357.033	657.539	1908.154	365.920
147	México	Reynosa	351.126	115251.142	351.126	735.295
148	Guadalajara	Huntsville	340.421	41745.862	340.421	2258.000

	NODO ORIGEN	NODO DESTINO	FLUJO O-D (ton)	CARGA GENERADA NODO ORIGEN (ton)	CARGA ATRAÍDA NODO DESTINO (ton)	LONGITUD DEL ARCO (km)
149	Mexicali	México	334.287	334.287	145551.097	2171.046
150	Dallas	Guadalajara	326.658	866.871	43423.574	1510.000
151	Guadalajara	San José del Cabo	322.792	41745.862	1908.154	726.662
152	Tijuana	Cuernavaca	317.537	5219.476	317.537	2326.400
153	México	Vancouver	316.723	115251.142	316.723	3948.000
154	Guadalajara	Miami	316.039	41745.862	10254.839	2425.000
155	México	San Juan, Puerto Rico	311.669	115251.142	311.669	3478.000
156	Mazatlán	México	300.506	657.539	145551.097	847.362
157	Guadalajara	Mexicali	296.538	41745.862	1442.274	1786.657
158	México	Ciudad Obregón	292.958	115251.142	292.958	1402.611
159	Mérida	Houston	291.807	6552.541	7079.311	1156.000
160	México	Matamoros	289.537	115251.142	289.537	715.708
161	Reynosa	México	289.098	289.098	145551.097	735.295
162	Guadalajara	San Antonio	287.412	41745.862	287.412	1114.000
163	México	Washington	284.481	115251.142	284.481	3026.000
164	Guadalajara	Hermosillo	281.817	41745.862	1895.352	1223.510
165	Del Bajío	Tijuana	276.634	685.972	7007.209	1995.370
166	Guadalajara	Caracas	275.201	41745.862	634.175	4059.000

Fuente: Elaboración personal con datos de la DGAC.

Cuadro A3.2

Red de carga de fletamento nacional e internacional para el año 2003

	NODO ORIGEN	NODO DESTINO	FLUJO O-D (ton)	CARGA GENERADA NODO ORIGEN (ton)	CARGA ATRAÍDA NODO DESTINO (ton)	LONGITUD DEL ARCO (km)
1	Luxemburgo	México	12872.770	14693.051	26728.566	9428.000
2	Guadalajara	Luxemburgo	4652.092	13859.701	8920.581	9608.000
3	México	Luxemburgo	4268.489	13929.255	8920.581	9428.000
4	Los Ángeles	México	3409.532	5172.784	26728.566	2503.000
5	Mérida	Miami	3046.850	5368.149	5980.494	1099.000
6	Miami	México	2853.524	5676.635	26728.566	2054.000
7	San Luis Potosí	México	2594.321	6825.153	26728.566	365.826
8	Miami	Mérida	2514.947	5676.635	3345.193	1099.000
9	Mérida	México	2321.299	5368.149	26728.566	994.268
10	México	San Luis Potosí	2298.863	13929.255	4097.836	365.826
11	México	Miami	2154.665	13929.255	5980.494	2054.000
12	Guayaquil	Guadalajara	2140.953	2140.953	12065.137	3593.000
13	Guadalajara	Austin	2129.273	13859.701	2129.273	1220.000
14	Guadalajara	Toledo	1929.704	13859.701	3005.010	3000.000
15	Austin	Guadalajara	1878.229	1878.229	12065.137	1220.000
16	Luxemburgo	Guadalajara	1820.281	14693.051	12065.137	9608.000
17	Los Ángeles	Guadalajara	1763.252	5172.784	12065.137	2107.000
18	San Luis Potosí	Monterrey	1651.081	6825.153	3567.523	396.504
19	Guadalajara	Los Ángeles	1635.332	13859.701	2540.280	2107.000
20	San Luis Potosí	Culiacán	1289.766	6825.153	1289.766	718.000
21	Tijuana	Hermosillo	1265.325	1501.078	2231.136	686.400
22	México	Guadalajara	1157.505	13929.255	12065.137	457.382
23	México	Bogotá	1155.049	13929.255	1155.049	3163.000
24	Monterrey	San Luis Potosí	1122.811	2602.926	4097.836	396.504
25	Monterrey	Toledo	1075.306	2602.926	3005.010	2334.000
26	Guadalajara	México	1006.624	13859.701	26728.566	457.382
27	Toledo	Guadalajara	976.185	2448.920	12065.137	3000.000
28	San Luis Potosí	Hermosillo	965.811	6825.153	2231.136	1262.000
29	México	Mérida	830.246	13929.255	3345.193	994.268
30	México	Los Ángeles	819.469	13929.255	2540.280	2503.000
31	Toledo	Saltillo	790.882	2448.920	888.995	2417.000
32	Toledo	Monterrey	681.853	2448.920	3567.523	2334.000
33	Guadalajara	Miami	663.345	13859.701	5980.494	2425.000
34	Huntsville	Guadalajara	625.633	625.633	12065.137	2258.000
35	San Antonio	Monterrey	563.711	563.711	3567.523	445.000
36	Guadalajara	Bangor	452.000	13859.701	452.000	4163.000
37	Sao Paulo	México	424.391	424.391	26728.566	7442.000

	NODO ORIGEN	NODO DESTINO	FLUJO O-D (ton)	CARGA GENERADA NODO ORIGEN (ton)	CARGA ATRAÍDA NODO DESTINO (ton)	LONGITUD DEL ARCO (km)
38	Guadalajara	Houston	406.000	13859.701	501.000	1323.000
39	La Habana	México	362.890	362.890	26728.566	1774.000
40	Rickenbacker apt - Columbus	Guadalajara	351.900	351.900	12065.137	2910.000
41	Guadalajara	Louisville	344.553	13859.701	344.553	2591.000
42	Guadalajara	Monterrey	335.733	13859.701	3567.523	663.923
43	Guatemala	México	322.990	322.990	26728.566	1055.000
44	México	Guayaquil	302.202	13929.255	302.202	3190.000
45	Monterrey	Huntsville	293.864	2602.926	396.581	1620.000
46	México	La Habana	279.600	13929.255	279.600	1774.000
47	Culiacán	San Luis Potosí	269.115	269.115	4097.836	718.000
48	Houston	Guadalajara	262.200	262.200	12065.137	1323.000
49	Hermosillo	San Luis Potosí	256.773	256.773	4097.836	1262.000
50	Dallas	Guadalajara	244.877	342.990	12065.137	1510.000
51	Atlanta	Monterrey	230.000	230.000	3567.523	1752.000
52	Saltillo	Laredo	218.394	218.394	218.394	281.000
53	Cd. Juárez	Chihuahua	217.454	217.454	217.454	327.928
54	Miami	Cancún	215.629	5676.635	215.629	857.000
55	San Luis Potosí	Guadalajara	212.689	6825.153	12065.137	310.075
56	México	Guatemala	206.543	13929.255	206.543	1055.000
57	Memphis	San José del Cabo	200.000	200.000	295.000	2326.000
58	Chihuahua	Guadalajara	199.934	199.934	12065.137	919.130
59	México	Mazatlán	169.506	13929.255	169.506	847.362
60	Manaus	México	161.611	161.611	26728.566	4947.000
61	Indianápolis	Guadalajara	158.300	158.300	12065.137	2683.000
62	Mazatlán	México	153.701	260.683	26728.566	847.362
63	Tijuana	San Luis Potosí	150.274	1501.078	4097.836	1956.000
64	Bangor	México	148.800	148.800	26728.566	3970.000
65	Guadalajara	Acapulco	118.787	13859.701	118.787	555.294
66	Cancún	Miami	115.634	115.634	5980.494	857.000
67	San Luis Potosí	Tijuana	111.485	6825.153	111.485	1956.000
68	Monterrey	Sao Paulo	110.945	2602.926	213.858	7976.000
	Mazatlán	Ciudad Obregón	106.982	260.683	106.982	586.600
70	Laredo	Monterrey	105.145	105.145	3567.523	203.000
71	México	Sao Paulo	102.913	13929.255	213.858	7442.000
72	Guadalajara	Huntsville	102.717	13859.701	396.581	2258.000
73	México	Panamá	99.097	13929.255	99.097	2406.000
	Dallas	Saltillo	98.113	342.990	888.995	
75	Panamá	México	96.113	96.113	26728.566	
76	San José del Cabo	Houston	95.000	95.000	501.000	

	NODO ORIGEN	NODO DESTINO	FLUJO O-D (ton)	CARGA GENERADA NODO ORIGEN (ton)	CARGA ATRAÍDA NODO DESTINO (ton)	LONGITUD DEL ARCO (km)
77	San Salvador	San José del Cabo	95.000	95.000	295.000	2414.000
78	Miami	Guadalajara	92.535	5676.635	12065.137	2425.000
79	Fort Bliss, USA	Guadalajara	90.332	90.332	12065.137	1292.000
80	Gander	Guadalajara	90.332	90.332	12065.137	5336.000
81	Tijuana	Los Ángeles	85.479	1501.078	2540.280	208.000
82	México	San Juan, Puerto Rico	85.108	13929.255	85.108	3478.000
83	El Paso	Cd. Juárez	84.963	84.963	84.963	19.400
84	Guadalajara	Memphis	83.541	13859.701	83.541	2078.000

Fuente: Elaboración personal con datos de la DGAC.

Cuadro A3.3
Red de carga nacional e internacional regular y de fletamento para el año 2003

	NODO ORIGEN	NODO DESTINO	FLUJO O-D (ton)	CARGA GENERAD A NODO ORIGEN (ton)	CARGA ATRAÍDA NODO DESTINO (ton)	LONGITUD DEL ARCO (km)
1	Luxemburgo	México	25810.070	30792.020	172715.704	9428.000
2	Ámsterdam	México	20603.414	22148.827	172715.704	9218.000
3	Los Ángeles	México	17151.937	28527.455	172715.704	2503.000
4	Guadalajara	Memphis	15545.148	55600.162	29744.794	2078.000
5	París	México	13956.167	13956.167	172715.704	9204.000
6	Memphis	Toluca	13018.074	27501.065	13018.074	1996.000
7	Memphis	Guadalajara	11267.314	27501.065	55261.521	2078.000
8	México	Los Ángeles	10658.611	129468.182	18623.624	2503.000
9	Los Ángeles	Guadalajara	10579.932	28527.455	55261.521	2107.000
10	Miami	México	10311.529	15303.919	172715.704	2054.000
11	Toluca	Memphis	9852.288	9852.288	29744.794	1996.000
12	Sao Paulo	México	8816.922	8816.922	172715.704	7442.000
13	Madrid	México	8410.792	8410.792	172715.704	9077.000
14	México	Guadalajara	8079.669	129468.182	55261.521	457.382
15	México	Miami	7754.770	129468.182	16453.833	2054.000
16	México	Ámsterdam	7541.467	129468.182	8244.930	9218.000
17	Mérida	Miami	7385.545	11920.690	16453.833	1099.000
18	México	Luxemburgo	7140.066	129468.182	13802.626	9428.000
19	Guadalajara	México	6848.763	55600.162	172715.704	457.382
20	México	Houston	6787.504	129468.182	7573.204	1234.000
21	Guadalajara	Luxemburgo	6662.560	55600.162	13802.626	9608.000
22	México	París	6481.550	129468.182	6481.550	9204.000
23	Guadalajara	Los Ángeles	6392.625	55600.162	18623.624	2107.000
24	Santiago de Chile	México	5108.799	5108.799	172715.704	6603.000
25	Luxemburgo	Guadalajara	4981.950	30792.020	55261.521	9608.000
26	México	Monterrey	4651.999	129468.182	20262.512	705.892
27	Louisville	México	4608.149	5035.790	172715.704	2453.000
28	Cincinnati	México	4525.798	6346.588	172715.704	2585.000
29	México	Bogotá	4514.413	129468.182	5059.930	3163.000
30	Monterrey	Memphis	4347.358	20771.918	29744.794	1419.000
31	Mérida	México	4243.338	11920.690	172715.704	994.268
32	Guatemala	México	4103.925	4103.925	172715.704	1055.000
33	Monterrey	Dayton	4083.378	20771.918	5625.706	2158.000
34	México	Mérida	3944.809	129468.182	7829.108	994.268
35	Miami	Mérida	3884.299	15303.919	7829.108	1099.000
36	México	Tijuana	3854.633	129468.182	7259.415	2294.938
37	Frankfurt	México	3765.868	3765.868	172715.704	9563.000

	NODO ORIGEN	NODO DESTINO	FLUJO O-D (ton)	CARGA GENERAD A NODO ORIGEN (ton)	CARGA ATRAÍDA NODO DESTINO (ton)	LONGITUD DEL ARCO (km)
38	Dayton	Monterrey	3747.406	5170.418	20262.512	2158.000
39	México	Cancún	3620.053	129468.182	4728.144	1280.055
40	México	Guatemala	3540.400	129468.182	3540.400	1055.000
41	Tijuana	México	3536.382	6591.299	172715.704	2294.938
42	Guadalajara	Louisville	3409.923	55600.162	3409.923	2591.000
43	Bogotá	México	3346.327	3346.327	172715.704	3163.000
44	San Antonio	Guadalajara	3336.266	3912.732	55261.521	1114.000
45	México	New York	3294.625	129468.182	3691.031	3346.000
46	Monterrey	Guadalajara	3256.647	20771.918	55261.521	663.923
47	Memphis	Monterrey	3215.677	27501.065	20262.512	1419.000
48	México	Cincinnati	3202.715	129468.182	5298.861	2585.000
49	Monterrey	México	3123.538	20771.918	172715.704	705.892
50	Guadalajara	Monterrey	2893.020	55600.162	20262.512	663.923
51	San Luis Potosí	México	2602.913	6829.262	172715.704	365.826
52	Monterrey	Austin	2544.569	20771.918	4673.842	550.000
53	Austin	Monterrey	2452.977	4331.206	20262.512	550.000
54	México	San Luis Potosí	2425.756	129468.182	4129.667	365.826
55	Chicago	México	2255.032	2255.032	172715.704	2722.000
56	Guayaquil	Guadalajara	2140.953	2140.953	55261.521	3593.000
57	Guadalajara	Austin	2129.273	55600.162	4673.842	1220.000
58	Guadalajara	Cincinnati	2096.146	55600.162	5298.861	2725.000
59	México	Santiago de Chile	2087.348	129468.182	2087.348	6603.000
60	Guadalajara	Toledo	1929.704	55600.162	3005.010	3000.000
61	México	Frankfurt	1878.344	129468.182	1878.344	9563.000
62	Austin	Guadalajara	1878.229	4331.206	55261.521	1220.000
63	Cincinnati	Guadalajara	1820.790	6346.588	55261.521	2725.000
64	México	Villahermosa	1810.332	129468.182	1810.332	677.094
65	San José, Costa Rica	México	1781.701	2431.574	172715.704	1921.000
66	México	Sao Paulo	1765.095	129468.182	2278.765	7442.000
67	San Luis Potosí	Monterrey	1666.784	6829.262	20262.512	396.504
68	México	San José, Costa Rica	1653.700	129468.182	1653.700	1921.000
69	México	Chicago	1638.464	129468.182	1638.464	2722.000
70	Ámsterdam	Guadalajara	1545.413	22148.827	55261.521	9381.000
71	Londres	México	1472.940	1472.940	172715.704	8914.000
72	México	Chihuahua	1398.124	129468.182	1718.529	1237.682
73	Tijuana	Hermosillo	1362.388	6591.299	4249.186	686.400
74	México	Londres	1322.072	129468.182	1322.072	8914.000
75	San Luis Potosí	Culiacán	1289.766	6829.262	2174.175	718.000
76	México	San José del Cabo	1233.980	129468.182	1913.805	1180.420
77	México	Hermosillo	1232.628	129468.182	4249.186	1609.601
78	México	Tuxtla Gutiérrez	1215.371	129468.182	1215.371	672.495

	NODO ORIGEN	NODO DESTINO	FLUJO O-D (ton)	CARGA GENERAD A NODO ORIGEN (ton)	CARGA ATRAÍDA NODO DESTINO (ton)	LONGITUD DEL ARCO (km)
79	Monterrey	San Luis Potosí	1178.023	20771.918	4129.667	396.504
80	Atlanta	México	1162.647	1162.647	172715.704	2146.000
81	México	Mexicali	1145.736	129468.182	1442.682	2171.046
82	Cancún	México	1136.045	1866.585	172715.704	1280.055
83	México	Pto. Vallarta	1114.608	129468.182	1376.910	658.677
84	Miami	Cancún	1108.091	15303.919	4728.144	857.000
85	Monterrey	Toledo	1075.306	20771.918	3005.010	2334.000
86	México	Veracruz	1075.102	129468.182	1075.102	304.054
87	Guadalajara	Dayton	1049.127	55600.162	5625.706	2819.000
88	México	Acapulco	1048.906	129468.182	1048.906	305.799
89	Guadalajara	Tijuana	1023.555	55600.162	7259.415	1897.112
90	Houston	México	1017.862	1351.175	172715.704	1234.000
91	Tijuana	Guadalajara	998.662	6591.299	55261.521	1897.112
92	Guadalajara	Miami	979.384	55600.162	16453.833	2425.000
93	Toledo	Guadalajara	976.185	2448.920	55261.521	3000.000
94	México	Cd. Juárez	969.026	129468.182	1214.082	1534.566
95	San Luis Potosí	Hermosillo	965.811	6829.262	4249.186	1262.000
96	México	Atlanta	957.756	129468.182	957.756	2146.000
97	Santa Cruz	México	955.795	955.795	172715.704	5708.000
98	México	Dallas	948.752	129468.182	948.752	1511.000
99	México	Del Bajío	939.853	129468.182	939.853	302.748
100	Dayton	Guadalajara	902.702	5170.418	55261.521	2819.000
101	México	Oaxaca	890.218	129468.182	890.218	363.880
102	México	Culiacán	884.409	129468.182	2174.175	1043.662
103	Lima	México	876.441	876.441	172715.704	4243.000
104	Huntsville	Guadalajara	858.559	858.559	55261.521	2258.000
105	México	Tokio	846.592	129468.182	846.592	11326.000
106	México	La Habana	801.330	129468.182	801.330	1774.000
107	San José del Cabo	Los Ángeles	800.048	1246.925	18623.624	1469.000
108	México	Madrid	796.632	129468.182	796.632	9077.000
109	Toledo	Saltillo	790.882	2448.920	790.882	2417.000
110	Pto. Vallarta	Los Ángeles	772.340	772.340	18623.624	1967.000
111	Tapachula	México	747.395	747.395	172715.704	879.951
112	México	Quito	744.442	129468.182	744.442	3129.000
113	México	Tampico	736.067	129468.182	736.067	338.523
114	México	Panamá	721.225	129468.182	721.225	2406.000
115	Guadalajara	Ámsterdam	703.463	55600.162	8244.930	9381.000
116	Chihuahua	México	683.728	928.784	172715.704	1237.682
117	Río de Janeiro	México	682.886	682.886	172715.704	
118	Toledo	Monterrey	681.853	2448.920	20262.512	
	México	Mazatlán	675.534	129468.182	1208.818	

	NODO ORIGEN	NODO DESTINO	FLUJO O-D (ton)	CARGA GENERAD A NODO ORIGEN (ton)	CARGA ATRAÍDA NODO DESTINO (ton)	LONGITUD DEL ARCO (km)
120	México	Toronto	663.098	129468.182	663.098	3259.000
121	San José, Costa Rica	Guadalajara	649.873	2431.574	55261.521	2368.000
122	Oaxaca	Tijuana	624.314	1187.692	7259.415	2657.603
123	New York	México	622.708	622.708	172715.704	3346.000
124	Villahermosa	México	615.093	615.093	172715.704	677.094
125	México	San Francisco	593.495	129468.182	1040.372	3032.000
126	San Antonio	Monterrey	576.466	3912.732	20262.512	445.000
127	Toronto	México	571.614	571.614	172715.704	3259.000
128	Dallas	Guadalajara	571.535	1131.440	55261.521	1510.000
129	Oaxaca	México	563.378	1187.692	172715.704	363.880
130	Dallas	México	559.905	1131.440	172715.704	1511.000
131	México	Zihuatanejo	559.441	129468.182	559.441	324.108
132	Guadalajara	Bogotá	545.517	55600.162	5059.930	3614.000
133	Los Ángeles	Mazatlán	533.284	28527.455	1208.818	1685.000
134	Dayton	México	520.310	5170.418	172715.704	2686.000
135	México	Aguascalientes	516.294	129468.182	516.294	419.926
136	México	San Salvador	513.711	129468.182	513.711	1239.000
137	Guadalajara	Sao Paulo	513.670	55600.162	2278.765	7870.000
138	México	Tapachula	511.064	129468.182	511.064	879.951
139	Culiacán	México	503.135	772.250	172715.704	1043.662
140	México	Torreón	495.476	129468.182	495.476	808.353
141	Guadalajara	Houston	493.893	55600.162	7573.204	1323.000
142	México	Dayton	493.201	129468.182	5625.706	2686.000
143	La Habana	México	490.328	490.328	172715.704	1774.000
144	Monterrey	Tijuana	487.778	20771.918	7259.415	1801.903
145	Panamá	México	486.330	486.330	172715.704	2406.000
146	Cd. Juárez	México	480.167	800.572	172715.704	1534.566
147	México	Ciudad del Carmen	465.551	129468.182	465.551	767.895
148	México	Santa Cruz	464.517	129468.182	464.517	5708.000
149	Mazatlán	México	454.207	811.240	172715.704	847.362
150	Guadalajara	Bangor	452.000	55600.162	452.000	4163.000
151	San José del Cabo	San Francisco	446.877	1246.925	1040.372	2012.000
152	México	Minatitlán	445.960	129468.182	445.960	495.864
153	La Paz	México	444.334	811.596	172715.704	1268.932
154	Guadalajara	Huntsville	443.138	55600.162	737.002	2258.000
155	Louisville	Guadalajara	427.641	5035.790	55261.521	2591.000
156	Hermosillo	México	417.114	922.184	172715.704	1609.601
157	Del Bajío	México	409.838	686.472	172715.704	302.748
	Tokio	México	400.797	400.797	172715.704	11326.000
	México	San Juan, Puerto Rico	396.777	129468.182	396.777	3478.000
	Cancún	New York	396.406		3691.031	2495.000

	NODO ORIGEN	NODO DESTINO	FLUJO O-D (ton)	CARGA GENERAD A NODO ORIGEN (ton)	CARGA ATRAÍDA NODO DESTINO (ton)	LONGITUD DEL ARCO (km)
161	México	Bahías de Huatulco	386.180	129468.182	386.180	503.981
162	México	La Paz	382.580	129468.182	382.580	1268.932
163	Monterrey	Hermosillo	381.457	20771.918	4249.186	1137.922
164	Cuernavaca	Tijuana	376.942	376.942	7259.415	2326.400
165	Tijuana	Monterrey	376.330	6591.299	20262.512	1801.903
166	Nuevo Laredo	México	368.282	368.282	172715.704	883.318
167	La Paz	Tijuana	367.262	811.596	7259.415	1137.535
168	México	Chetumal	359.650	129468.182	359.650	1114.211
169	México	Caracas	358.974	129468.182	634.175	3601.000
170	Mazatlán	San José del Cabo	357.033	811.240	1913.805	365.920
171	Rickenbacker apt - Columbus	Guadalajara	351.900	351.900	55261.521	2910.000
172	México	Reynosa	351.126	129468.182	351.126	735.295
173	Mexicali	México	334.287	334.287	172715.704	2171.046
174	Cancún	Miami	334.134	1866.585	16453.833	857.000
175	Houston	Guadalajara	333.313	1351.175	55261.521	1323.000
176	Guadalajara	San José del Cabo	322.792	55600.162	1913.805	726.662
177	Cd. Juárez	Chihuahua	320.405	800.572	1718.529	327.928
178	Tijuana	Cuernavaca	317.537	6591.299	317.537	2326.400
179	México	Vancouver	317.223	129468.182	317.223	3948.000
180	Guadalajara	Hermosillo	306.902	55600.162	4249.186	1223.510
181	San Luis Potosí	Guadalajara	303.988	6829.262	55261.521	310.075
182	México	Guayaquil	302.202	129468.182	302.202	3190.000
183	Guadalajara	Mexicali	296.946	55600.162	1442.682	1786.657
184	Monterrey	Huntsville	293.864	20771.918	737.002	1620.000
185	México	Ciudad Obregón	292.958	129468.182	292.958	1402.611
186	Mérida	Houston	291.807	11920.690	7573.204	1156.000
187	México	Matamoros	289.537	129468.182	289.537	715.708
188	Reynosa	México	289.098	289.098	172715.704	735.295
189	Guadalajara	San Antonio	287.412	55600.162	287.412	1114.000
190	México	Washington	284.481	129468.182	284.481	3026.000
191	Del Bajío	Tijuana	276.634	686.472	7259.415	1995.370
192	Guadalajara	Caracas	275.201	55600.162	634.175	4059.000
193	Matamoros	México	273.208	273.208	172715.704	715.708
194	Culiacán	San Luis Potosí	269.115	772.250	4129.667	718.000
195	Los Mochis	México	264.468	264.468	172715.704	1234.343
196	Los Ángeles	Pto. Vallarta	262.302	28527.455	1376.910	1967.000
197	Hermosillo	San Luis Potosí	256.773	922.184	4129.667	1262.000
198	Hermosillo	Tijuana	248.297	922.184	7259.415	686.400
199	Chihuahua	Cd. Juárez	245.056	928.784	1214.082	327.928

Fuente: Elaboración personal con datos de la DGAC.

Anexo 4. Resumen de los parámetros estimados para los modelos gravitacionales

Cuadro A4.1

Resumen de las estimaciones y de la significancia de los coeficientes que se utilizaron para estimar los parámetros de los nueve modelos gravitacionales.

	Nacional			Internacional			Nacional e Internacional		
	Reg.	Flet.	Reg. y Flet. (3)	Reg. (4)	Flet. (5)	Reg. y Flet. (6)	Reg. (7)	Flet. (8)	Reg. y Flet. (9)
Intercepción	-5.45*	3.09	-4.38*	-1.83	0.443	-2.45*	-3.93*	0.13	-3.07*
	(-6.81)	(1.32)	(5.06)	(-1.64)	(0.51)	(-2.17)	(-5.26)	(0.16)	(-4.69)
Variable X ₁	0.65*	0.45*	0.67*	0.64*	0.448*	0.59*	0.54*	0.408*	0.49*
In (VG*VA)	(18.3)	(5.25)	(18.13)	(10.87)	(8.44)	(10.7)	(15.03)	(9.89)	(15.69)
Variable X ₂	0.08	-0.56*	-0.13	-0.32*	-0.15	-0.17	0.09	-0.05	0.1
In (D)	(1.03)	(-2.10)	(-1.46)	(-3.2)	(-1.21)	(-1.65)	(1.48)	(-0.61)	(1.75)
R ² ajustado	0.7556	0.6199	0.7174	0.5971	0.5732	0.5399	0.5985	0.5493	0.5819

Reg. = servicio regular. Flet. = servicio de fletamento.

Estadístico t student entre paréntesis.

^{*} Resulta significativo al 95% de confianza.

‡ Certificación ISO 9001:2000 según documento No 03-007-MX, vigente hasta el 24 de octubre de 2006 (www.imt.mx)

§ Laboratorios acreditados por EMA para los ensayos descritos en los documentos MM-054-010/03 y C-045-003/03, vigentes hasta el 9 de abril de 2007 (www.imt.mx)

CIUDAD DE MÉXICO

Av Patriotismo 683 Col San Juan Mixcoac 03730, México, D F tel (55) 5598-5610 fax (55) 55 98 64 57

SANFANDILA

km 12+000, Carretera Querétaro-Galindo 76700, Sanfandila, Qro tel (442) 216-9777 fax (442) 216-9671

www.imt.mx publicaciones@imt.mx